
17.11.2025 04:05 1/6 Rethinking my Backup Strategy

pswiki - http://wiki.psuter.ch/

Rethinking my Backup Strategy

in this wiki you can find my current backup script mobi_backup which basically does everything i
needed so far. However, after years of using it both privately as well as on customer installations,
mostly for local backups, it is time to take a step back and re-think my backup strategy

The main reason why I feel my current backup solution is no longer the perfect solution for me is, that
I want to better protect my data from ransomware and similar attacks as well as targeted hacking
attacks, where a hacker (or a group of hackers) manually hijack a server and then try to cause
damage to the owner of the server by messing with the data on it.

Mobi is not very secure in this regard, as it usually runs on a backup server that needs full root access
to all backup clients it should pull backups from. So if someone hijacks the Backup server that person
will automatically have password-less root access to any of the Linux systems it backs up, which is
really bad to be honest!

On my private server, mobi is running on the client server itself and the backup is stored to another
set of local disks.. that's also not very good, as ransomware would then encrypt both my data and my
backup at once, so even the backup will be rendered useless.. even worse, since unchanged files
between backups are hardlinked instead of copied, encrypting all the backups will be extremely fast,
as one only has to encrypt each version of a file once.

Mobi does a great job to protect against accidential data loss, data loss due to hardware issues like
multiple disk failures, loss of complete raidsets etc. and also in cases where the client server is
hacked but the backup server is not.. since the backup is completely controlled from the backup
server, there isn't anything a hacker can do on a client server (the one being backed up) to mess up
the backup from there.

Since there have recently been an increasing number of reports of targeted hacking attacks on
companies in my vincinity (meaning, switzerland in general, or simliar fields of operation, customers
or direct compteditors of customers etc.) I realized it's time to re-think how i do backups and to set
new goals as far as security goes.

the main goal of Mobi was to be as portable and simple as possible and to provide incremental
backups where i had full snapshots of each backup in a simple folder structure to facilitate restores
and make browsing of backups easy.

What i want from my new backup solution

No more root access should be necessary between any of the involved machines!
untrusted client machines –> we have to assume, that the machine we are creating a backup
for could be hacked, so we have to make sure, that not even root on a client machine could
delete or tamper with previous benchmarks. We will assume however, that the retention time
for the backups is longer than the time the client machine has been hacked, meaning, we don't
need to detect if the client is hacked or not.. we will continue to make backups for as long as
the hacker wants to and hope that the admin of the hacked client will notice the attack before
his oldest backup is purged from the repository
untrusted servers: the backup server can't be trusted.. we have to assume that the backup

http://wiki.psuter.ch/doku.php?id=mobi_backup

Last update:
01.01.2021 23:05 rethinking_my_backup_strategy http://wiki.psuter.ch/doku.php?id=rethinking_my_backup_strategy&rev=1609538747

http://wiki.psuter.ch/ Printed on 17.11.2025 04:05

server could be hacked and have to take precautions, that this does not lead to the client
servers being hacked as well as a result.. for that reason, the backup server should not be
allowed to login or execute anything on the client machine. also the backup target should not
hold sensible information in an unencrypted format (such as /etc/passwd files, ssh keys etc.
which may facilitate hacking the client servers)
backups of a backup should be possible and should follow the same principles as mentioned
above: Mobi 2.0 should at least make it possible, to create a secondary backup from the backup
server to an offsite backup server, so that a local backup can be kept in a local network and a
remote backup can be kept for disaster recovery like after a fire or water damage or similar. the
secondary backup may lag slightly behind the main backup. It should be created by copying
data from the backup server to the secondary backup server, not by just creating a second
backup from the client directly.
shortest expected backup intervals are daily backups.. however, it wouldn't hurt if shorter
intervals where possible too.
we only want to backup from linux to linux
we only backup servers, so we can assume that both the client as well as the server are online
24/7, so scheduling by simple cron jobs or similar is enough. however a failed backup should be
resumable at the next time the cron job runs again.
backups should be incremental, so only files that where changed or new files since the last run
should be submitted to the backup server. we do tolerate re-uploading an entire file, even if
only a partial change was made..
there should be a way to mount or at least view any backup as if it was a full backup. Most
probably this will be achieved once again through hard-linking unchanged files
the tool should be as simple to install as possible.. either by just copying a simple script and
installing some very common linux tools like rsync etc. or by making it available as a docker
container or similar
we accept the fact, that there will most probably be a client and a server side script that needs
to be put in place, running it all form one side won't be possible due to the security concerns
above

discussion of available tools and solutions

i have discussed some tools mainly regarding encrypted backups already in
encrypted_backups_to_the_cloud. In addition to that i have looked at some other tools for this project:

Borg

Borg is a very smart and capable backup solution with lots and lots of features and most importantly,
block level deduplication. It can do a lot more than what I need, BUT it sadly does not allow to create
a user that can only write new backups but not delete old ones as well. While there is a append-only
policy available, it is impractical to rely on it, as one has to either forget about automatic purging of
old backups. That's the deal breaker for me. Read more about this in the FAQ and the Drawbacks of
append-only mode

Burp

http://wiki.psuter.ch/doku.php?id=encrypted_backups_to_the_cloud
https://www.borgbackup.org/
https://borgbackup.readthedocs.io/en/stable/faq.html#how-can-i-protect-against-a-hacked-backup-client
https://borgbackup.readthedocs.io/en/stable/usage/notes.html#drawbacks
https://borgbackup.readthedocs.io/en/stable/usage/notes.html#drawbacks

17.11.2025 04:05 3/6 Rethinking my Backup Strategy

pswiki - http://wiki.psuter.ch/

Burp is the best backup tool i know to make backups of clients that aren't available 24/7 such as
workstations or even notebooks. it also supports linux, windows and Mac OS. Burp actually does
pretty much anything I want and a lot more out of the box. the only draw back that i found so far is,
that it seems rather difficult to create secondary backups. there is an offsite-backup script but it says
in the header of the script, that it doesn't quite work.. the main issue seems to be the fact, that burp
moves the full-backup always along to the youngest backup and only keeps the previous versioins of
changed or deleted files stored in the previous backup's data directory. this makes it very easy do
purge old backups of course, but it is a little trickier to create secondary backups.. i haven't tested if
this can be overcome by using hardlinked backups (a config option in burp) though. burp also
supports client side encryption which breaks delta uploads of modified files. At the end of the day,
burp provides no real advantage to me over using a combination of some other tools and some
custom scripts to glue them together, but it adds complexity mainly to the offsit backup part instead
and it adds potential security risks by setting wrong configuration options. Still, it is a complete and
running software and would probably save some time on my end, and it offers so many more features
which i currently don't use (like windows backups) but that might come in handy in the future. So
maybe my final solution could be writing a offsite-bakckup for burp to comlete the requried feature
set for me :)

Restic

Restic seems to be an awesome tool that does almost everything i want my new backup tool to do..
Most importantly, it creates client-side encrypted incremental backups of your servers and can then
store it to a broad range of storages available including S3 compatible storages etc. This is all very
nice, BUT it is run on the client side only, which menas, if a hacker gains control over your server and
decides to encrypt or delete your date, he can simply delete all your backups and you are screwed..
so it sadly fails our security requirements.. but maybe it could be used as the client side of my backup
solution, with a server that prevents deleting old backups from the client.. this will need some further
research

possible solutions

Burp

Since burp has all the features we want, it seems like it might be worth to just dig into the remote-
backup issue and fix that in whatever way i can find.

possible solutions to consider are:

use burp in hardlink mode and try if using rsync is simpler now
use burp with a BTRFS or ZFS storage underneath and then create a custom off-site backup (by
using BTRFS Snapshots).

BTRFS seems to be a good choice as it is designed to provide easily transferrable
snapshots.. by backing up each snapshot to the offsite server, we could make sure, that
even if the entire btrfs filesystem is messed up on the main backup server, we would still
have intact old snapshots on the secondary backup server.
ZFS on the other hand provides erasure coding through the various radz2 and so on
levels, which means we will loose less harddisk space and can work without expensive

https://burp.grke.org/
https://github.com/restic/restic

Last update:
01.01.2021 23:05 rethinking_my_backup_strategy http://wiki.psuter.ch/doku.php?id=rethinking_my_backup_strategy&rev=1609538747

http://wiki.psuter.ch/ Printed on 17.11.2025 04:05

and error prone raid controllers in our backup systems, that would be a nice side-effect
the advantage of any of these snapshot method is, that they will work no matter what the
burp developers decide to change in the future about how they store backups.. so we
don't need to mess with internals of burp to get a remote backup running, where with
rsync we need to know what burp does exactly and how we can back up the right data to
preserve this functionality.

the main advantages of using burp over a selve made variant are

burp is tested and trusted by many
burp already solves the permission issues
burp provides a way to browse client-side encrypted backups already
we only have to implement a secondary backup solution. so this is probably a lot less work over
all
we get additional features such as windows backups for free which might be appreciated in the
future.

self-made collection of other tools

so “self made” is a bit flexible here.. what i mean is a larger script that will use a combination of
several tools together:

rsync as the main tool to copy data from the client to the server
GoCryptfs in reverse mode on the client to provide client side encryption
use rsync daemon on the server to provide access to the backup repos for each of the clients.
use rsync –link-dest or cp -alx to first create a fully hard-linked copy to the last
successful backup and then share this via rsync daemon for the client to then update the
changed file in this repo.. this should probably result in a similar backup structure as my current
moby script does, but with the added separation of client and server.
provide a read-only share via rsync daemon where the client can access all its backups to
restore files from. –> this needs some more thinking / research, as the backups will
contain encrpyted file- and directory names as well as data.. so we would need some other
means of sharing the backups in read-only mode but that will retain the orignal linux
permissions upon restore. the share should be mountable on the client, so that we can use
again gocryptfs to decrypt the backup before restoring files. Maybe NFS piped through ssh or
something similar might be a solution.
use the same set of tools again to create backups from the primary backup server to the
secondary.

Unsolved issues of this solution:

file ownership is retained on all the files, so a file belonging to root on the client will belong to
root on the backup server.. this brings some security issues, as for example a privilege
escalation could be made possible by backing up a copy of bash belonging to root and with the
suid bit set.. once the attacker gets unprivileged user access to the backup server, he could
start this shell and become root. So it would be preferable to change at least file ownership to a
dedicated user and limit the possibilities for an attack. shiftfs in combination with unshare to
create a linux user namespace could be a solution here.
restoring files and browsing backups needs to be simple. for example it should be possible
to either use normal rsync -l or even better, to mount complete backups from the backup

https://nuetzlich.net/gocryptfs/
https://github.com/linuxkit/linuxkit/tree/master/projects/shiftfs

17.11.2025 04:05 5/6 Rethinking my Backup Strategy

pswiki - http://wiki.psuter.ch/

server onto the client server and then browse through them. however, this is currently not so
simple because:

backups are encrypted before rsync lays a hand on the file, so rsync -l will list
encrypted file- and directory names and it will download encrypted files which will then
need to be decrypted.. so finding the latest version of a file that contains a string X for
example is very cumbresome
it would be nice to be able to mount an entire backup, or even all backups at once, via for
example sshfs. One could then remount it using gocryptfs on the client to see a decrypted
representation. however, this brings another isse: the mount should be read-only, so that
a hacked client can't destroy existing backups on the backup server. so either we find a
way to create a read-only share using for example NFS (possibly tunnelled over ssh) or we
find a way to make them read-only on the backup server already before sharing them
through sshfs.
i have found fuse-rsync which allows mounting an rsync module via a fuse mount.
however, this is merely a proof of concept that has not been developed any further in the
past 7 years, so not really an option here.

First POC - Burp + rsync

with all the arguments above considered, I decided to proceed a burp based solution and just add off-
site capabilities to burp. Here is the targeted setup:

“Local” backup server running burp in server mode with the following key settings:
hardlinked_archive = 1
client_can_delete = 0
user=jdoe and group=jdoe where jdoe is some unprivileged non-root user
one needs to make sure that all the necessary paths mentioned in burp-server.conf
and CA.cnf are writable and or readable by the unprivileged user who's running burp

“Remote” backup server, running a rsyncd service which shares a single directory i.e.
/backups/current
clients run the burp client and use client-side encryption with a strong password. the following
additional core settings are used:

server_can_restore = 0
server_can_override_includes = 0

a script on the burp server uses rsync -aAhHvXxR –numeric-ids –delete
/var/spool/burp/./*/current/ rsync://user@offsite/current0 to write backups
to the offsite server
on the offsite server, a script is called (somehow, haven't figured out yet how exactly this will be
done) after the rsync from the burp server successfully finished. the script will use cp -alx
/backups/current /backups/`date +%Y.%m.%d-%H%M` to create hardlinked copies of
the current directory. by using this script, we can avoid to use the --link-dest option of
rsync which in turn would make it necessary to at least include the latest completed backup
also in the writable share.

to try it all out i used a bunch of ubuntu test docker containers

docker network create burp

to create the custom network

https://github.com/zaddach/fuse-rsync
http://wiki.psuter.ch/doku.php?id=ubuntu_test_docker_image

Last update:
01.01.2021 23:05 rethinking_my_backup_strategy http://wiki.psuter.ch/doku.php?id=rethinking_my_backup_strategy&rev=1609538747

http://wiki.psuter.ch/ Printed on 17.11.2025 04:05

docker run --net burp --name burpsrv -ti ubuntu-test:latest

to create the container for the burp server, and similar commands for the other servers.

From:
http://wiki.psuter.ch/ - pswiki

Permanent link:
http://wiki.psuter.ch/doku.php?id=rethinking_my_backup_strategy&rev=1609538747

Last update: 01.01.2021 23:05

http://wiki.psuter.ch/
http://wiki.psuter.ch/doku.php?id=rethinking_my_backup_strategy&rev=1609538747

	Rethinking my Backup Strategy
	What i want from my new backup solution
	discussion of available tools and solutions
	Borg
	Burp
	Restic

	possible solutions
	Burp
	self-made collection of other tools

	First POC - Burp + rsync

