
23.01.2026 14:30 1/2 Parallel Rsync (my way)

pswiki - http://wiki.psuter.ch/

Parallel Rsync (how I believe it's done)

rsync is sooo cool, chances are, if you need to copy some files for whatever reason from one linux
machine to another or even from one directory to another, rsync has everything you need. one thing
though is terribly missing: parallelism

here is, how i did it when i needed to copy 40 TB of data from one raidset to another while the server
was still online serving files to everybody in the company:

Step 1: creat an incremental file list

depending on your needs, there are different options how to do that.

Option 1: rsync --dry-run

one possibly slow option is to do a dry-run of rsync with all your options you want to use and then use
the file-list created by the dry-run for your rsync job.

first do the dry run:

rsync -aHvx --dry-run --out-format="%n" /source/ /target/ | tee
/tmp/rawfilelist

use rsync options like you would for a simple rsync run to copy all your files, but add the –dry-run
–out-format=“%n” options. the out-format option is to make sure you get a simple list of files
without the added information about symlinks and hardlinks, that you would get when this option was
omitted.

now clean up the resulting file: the problem with the dry-run output is, that you also get directory
names before you get the list of the contets of each directory. that's useless if we want to continue
later on and run an rsync for each file. so we need to get rid of these directory paths. this will
obviously lead to empty directories not being copied, we can fix that later on by running a simple
single thread rsync at the end to fix things like exactly that :) so here we go.. let's clean up the filelist
(you can do this inplace, but you might just want to use this line and pipe it directly into parallel
further down the road)

cat /tmp/rawfilelist | sed -e 's/.*\/$//' | sed -e 's/sent .* bytes\/sec$//'
| sed -e 's/^total .* (DRY RUN)$//' | sed -e 's/sending incremental file
list//' | sed -e '/^$/d' > /tmp/filelist

Option 2: using find

after waiting too long for Option 1 to finish on a system that carried tons of backups of other systems,
i tried this option:
if you have tons of files and want to skip the lengthy process of producing a file list via rsync, you can

Last update: 08.08.2016 19:53 parallel_rsync http://wiki.psuter.ch/doku.php?id=parallel_rsync&rev=1470678806

http://wiki.psuter.ch/ Printed on 23.01.2026 14:30

create a list of directories using find and then simply run an rsync per directory. this will give you the
full parallelism at the begining but might end with a few ever lasting rsyncs if you don't dig deep
enough when doing your initial directory list. still, this might save alot of time.

find /source/./ -maxdepth 7 -type d | perl -pe 's|^.*?/\./|\1|' >
/tmp/filelist

with the –maxdepth option you can set how deep you want to dive into your directory tree.. the goal
is to get directories with a rather small number of files so you don't have to wait too long for the last
couple of rsyncs to finish. also note the added /./ at the end of the source path. that's important as
we need this to define to which point rsync should be relative. also check out the man page of rsync, i
stole the idea from there ;) there is no cleaning needed here, as we really want the directory names
to sync directories rather than files.

Step 2: run Rsync with GNU prallel

now it's time to feed our filelist into rsync and run our parallel sync job. in order to parallelize rsync
we use the GNU tool parallel. it will take a list of files and run a command in parallel with as many
processes as are specified by the -j option. in the command string, it will replace {} with the
contents of the respective line. pretty simple :)

cat /tmp/filelist | parallel -j 10 rsync -aHvx --relative /source/./{}
/target/

note how, like in the above mentioned Option 2, we use the '/./' separator in the source path to tell
rsync where to start with the relative path that it transmits to the client. also make sure you actually
use the –relative option, otherwise your targets file structure will be very flat :)

Step 3: make sure we didn't miss anything

probably the best feature about rsync is, that it resumes aborted previous jobs nicely and it can be
run several times across the same source and target with no harm. so let's use this property to just fix
everything we have missed or done wrong by simply running a single thread rsync in the end. now
this can take some time, and I know no way around that.

rsync -aHvx /source/ /target/

From:
http://wiki.psuter.ch/ - pswiki

Permanent link:
http://wiki.psuter.ch/doku.php?id=parallel_rsync&rev=1470678806

Last update: 08.08.2016 19:53

http://wiki.psuter.ch/
http://wiki.psuter.ch/doku.php?id=parallel_rsync&rev=1470678806

	Parallel Rsync (how I believe it's done)
	Step 1: creat an incremental file list
	Option 1: rsync --dry-run
	Option 2: using find

	Step 2: run Rsync with GNU prallel
	Step 3: make sure we didn't miss anything

