12.02.2026 08:51 1/8 mysql backups using replication

mysql backups using replication

if you want to create clean, consistent backups of a mysql (or mariadb) database without stopping the
live database, consider using a replica server which you can then shut down, take a backup and then
start again. besides producing nice and consistent backups, this will also have almost no performance
impact on the live database, especially if myisam tables are used which would block writes with
almost any other backup method

in my case i had a docker-compose.yml which contains the php web app and a mysql server service. i
first copied the service in the docker-compose.yml file to a mysql-replica service, so that the
respective sections look like this:

mysql:
image: mysql:8.0
build:
context: ./mysql/
dockerfile: Dockerfile
environment:
- MYSQL RANDOM ROOT PASSWORD=
- TZ=Europe/Zurich
restart: always
volumes:
- ./data/mysql:/var/lib/mysql
- ./conf/mysql:/etc/mysql/conf.d
user: '1002:1002'
cap_add: SYS NICE
networks:
- internal
mysql-replica:
image: mysql:8.0
build:
context: ./mysql/
dockerfile: Dockerfile
environment:
- MYSQL RANDOM ROOT PASSWORD=
- TZ=Europe/Zurich
restart: always
volumes:
- ./data/mysql-replica:/var/lib/mysql
- ./conf/mysql-replica:/etc/mysql/conf.d
user: '1002:1002'
cap_add: SYS NICE
networks:
- internal

basically make sure both are the same and make sure they can use different data directories and
different config files.

for the primary server, make sure the config contains the following settings:

pswiki - http://wiki.psuter.ch/

Last update:
13.11.2025 08:56

mysql_backups_using_replication http://wiki.psuter.ch/doku.php?id=mysql_backups_using_replication&rev=1763020562

[mysqld]
server-id = 1

binary logging for replication
log bin = mysql-bin
binlog format = ROW

GTID-based replication

gtid mode = ON
enforce gtid consistency = ON
log slave updates = ON

optional but recommended
binlog expire logs seconds = 604800 # 7 days

and on the replica the settings should look like this:

[mysqld]
server-id = 2
relay log = relay-bin

disable binary logging as we don't need this on the replica
skip-log-bin

GTID functionality is needed for replication
gtid mode = ON
enforce gtid consistency = ON

make it read-only for safety

read only = ON

super _read only = ON

don't auto-start replication until we finish setup

then comment this out
skip slave start = ON

on the primary server which is still running, create a replica user. use a password
charcters length.

docker-compose exec mysql mysql -uroot -psecretrootpassword

CREATE USER 'repl'@'%s' IDENTIFIED BY 'replicationpassword’;

of max. 32

GRANT REPLICATION SLAVE, REPLICATION CLIENT ON *.* TO 'repl'@'s’';

FLUSH PRIVILEGES;

now stop all containers and copa the mysql data directory from the primary to the replica container

data storage path:

rsync -av data/mysql/ data/mysql-replica/

http://wiki.psuter.ch/

Printed on 12.02.2026 08:51

12.02.2026 08:51 3/8 mysql backups using replication

make sure new db server gets new uuid:

rm ./data/mysql-replica/auto.cnf

now start both database containers. make sure they are both started and running.

set up to replicatoin. connect to the replica server first

docker-compose exec mysql-replica mysql -uroot -psecretrootpassword
STOP REPLICA; -- or STOP SLAVE;

CHANGE REPLICATION SOURCE TO

SOURCE_HOST = 'mysql’,
SOURCE_PORT = 3306,
SOURCE_USER = 'repl',

SOURCE_PASSWORD = 'replicationpassword’,
SOURCE AUTO POSITION = 1,
GET SOURCE PUBLIC KEY = 1;

START REPLICA; -- or START SLAVE;

check the replication status:

SHOW REPLICA STATUS\G -- or SHOW SLAVE STATUS\G;
If all went well, you should see:

Replica IO Running: Yes

Replica SQL Running: Yes

Seconds Behind Source: 0 (after it'’s caught up)

you can also see the the executed and retrieved Gtid dataset, they should update as the master is
writing data to the db.

now remove the skip slave start = ON line or comment it out in the conf/mysql-
replica/replica.cnf file and restart the container, then re-check if it is still syncing.

Backup and Monitoring

now lets create a backup script. this script will first check if the replication is still running and updated
before it shuts down the replica container and creates a tar.gz file of the database data directory. on
success, it will notify a uptime kuma push monitor.

for this to work we first need to create a monitoring user on the master database which will then
auto sync to the read-only replica database as well.

docker-compose exec mysql mysql -uroot -psecretrootpassword

pswiki - http://wiki.psuter.ch/

Last update:

i icati -JJwiki ?id= i icati =
13.11.2025 08:56 mysql_backups_using_replication http://wiki.psuter.ch/doku.php?id=mysql_backups_using_replication&rev=1763020562

CREATE USER 'monitor'@'s%s' IDENTIFIED BY 'monitor-password’;
GRANT REPLICATION CLIENT ON *.* TO 'monitor'@'s';
FLUSH PRIVILEGES;

to test if it is working, run the following query on the replica mysql server this time:

docker-compose exec mysql-replica mysql -umonitor -pmonitor-password -e
"SHOW SLAVE STATUS\G"

this should show the same output we saw previously when setting up the replication.

and here is the script that does it all. it only sends a heartbeat update to the uptime kuma push
monitor when the backup is successful AND the replica server was replicating prior to stopping it and
backing it up. obviously you need to adjust the user parameters at the begining of the script:

#!/usr/bin/env bash
-euo pipefail

HHARBR AR B R A A B R AR B R R AR RRAHRBAHRH R AR BB A HSRH
Settings
HHUEHHH SRS H RS H RS

Directory where your docker-compose.yml lives
COMPOSE DIR="/opt/buchmann-prod" # <-- CHANGE THIS

Name of the replica service in docker-compose
REPLICA SERVICE="mysql-replica"

Where the replica's data directory is on the host
REPLICA DATA DIR="${COMPOSE_DIR}/data/mysql-replica"

Where to store backups
BACKUP_DIR="/backup"

How many backups to keep
MAX_ BACKUPS=24

Uptime Kuma entity ID
ENTITY ID="2N88TDy5YeCX7n3cJD5Wok9DNZhdR1lw6" # <-- CHANGE THIS

Monitoring DB user (created on the PRIMARY, replicated to replica)
MONITOR USER="monitor"

MONITOR PASSWORD="jookeg4ahr@eidienaiGhe8nieGolu" # <-- CHANGE THIS or
move to env

State file to track last Executed Gtid Set
STATE DIR="${BACKUP_DIR}/.state"
LAST GTID FILE="${STATE_DIR}/last gtid"

G e R e e e R e e R R e e

http://wiki.psuter.ch/ Printed on 12.02.2026 08:51

12.02.2026 08:51 5/8 mysql backups using replication

Globals
B e L R R Rt o

START TS=$%$(date +%s
REPL WARN=0 # 0=0K, Il=replication issue detected

mkdir -p "${BACKUP_DIR}" "${STATE_DIR}"

B s e S e
Functions
HUHAHH AR A H B SHASH SRS

check replication
echo "[$(date)] Checking replication status on ${REPLICA_SERVICE}..."

Get SHOW SLAVE STATUS output

local status

status=$(docker-compose -f "${COMPOSE_DIR}/docker-compose.yml" exec -T
"${REPLICA_SERVICE}" \

mysql -u"${MONITOR_USER}" -p"${MONITOR_PASSWORD}" -e "SHOW SLAVE
STATUS\G" 2>/dev/null true

-z "${status}" -
echo "[$(date)] WARNING: SHOW SLAVE STATUS returned nothing. Replication
may not be configured."
REPL_WARN=1
return

Parse key fields
local io running sql running seconds behind executed gtid

io running=$(printf '%ss\n' "${status}" awk -F: '/Slave IO Running/
{gsub(/~[\tl+/, "", $2); print $2}°

sql _running=$(printf 'S%s\n' "${status}" awk -F: '/Slave SQL Running:/
{gsub(/~[\tl+/, "", $2); print $2}'

seconds behind=$(printf '%s\n' "${status}" awk -F:
‘/Seconds Behind Master/ {gsub(/~[\t]+/, "", $2); print $2}'

executed gtid=$

printf '%s\n' "${status}" \

sed -n 's/™ *Executed Gtid Set:[[:space:]]*//p'

echo "[$(date)] Slave IO Running=${io_running},
Slave SQL Running=${sql_running}, Seconds Behind Master=${seconds_behind}"

Basic health check

"${io_running}" '= "Yes" "${sql_running}" '= "Yes" ;
echo "[$(date)] WARNING: Replication threads not running correctly."
REPL WARN=1

pswiki - http://wiki.psuter.ch/

Last update:

13.11.2025 08:56 mysql_backups_using_replication http://wiki.psuter.ch/doku.php?id=mysql_backups_using_replication&rev=1763020562

Check if replication advanced since last backup (via Executed Gtid Set)
-n "${executed_gtid}" ;
-f "${LAST_GTID_FILE}" ;
local prev gtid
prev_gtid=$(<"${LAST_GTID_FILE}"
"${prev_gtid}" == "${executed_gtid}" ;
echo "[$(date)] WARNING: Executed Gtid Set unchanged since last
backup — replication may be stuck."
REPL_WARN=1

echo "[$(date)] Replication has advanced since last backup."”

echo "[$(date)] No previous GTID file — this is probably the first
backup."

Update GTID state for next run
printf 'ss\n' "${executed_gtid}" "${LAST_GTID FILE}"

echo "[$(date)] WARNING: Executed Gtid Set is empty."
REPL_WARN=1

send uptime ping
local end ts
end ts=$(date +%s
local walltime=$((end ts - START TS

local status="up"
local msg="0K"

msg="¢${msg// /_}"

local
url="https://uptime.dalco.ch/api/push/${ENTITY_ID}?status=${status}&msg=${ms
g}&ping=${walltime}"

echo "[$(date)] Sending uptime ping: ${url}"
curl -fsS "${url}"” dev/null 2=41 echo "[$(date)] WARNING: failed to
send uptime ping"

on exit
local exit code="$1"
echo "[$(date)] Starting ${REPLICA_SERVICE} container again..."
docker-compose -f "${COMPOSE_DIR}/docker-compose.yml" start
"${REPLICA_ SERVICE}" \
echo "[$(date)] WARNING: failed to start ${REPLICA_SERVICE}"

http://wiki.psuter.ch/ Printed on 12.02.2026 08:51

12.02.2026 08:51 7/8 mysql backups using replication

Only send ping if:

- script exited successfully (exit code == 0)
- replication checks reported no issues (REPL WARN == 0)
"${exit_code}" -eq 0 "${REPL_WARN}" -eq 0O ;

send uptime ping

echo "[$(date)] Not sending uptime ping (exit code=${exit_code},
REPL WARN=${REPL_WARN})."

trap 'on exit $?' EXIT

HHHB R AR H BB AR R AR R R
Main
HIH A H AR AR B SH AR H SRS

echo "[$(date)] Starting MySQL replica backup..."
cd "${COMPOSE_DIR}"

1) Check replication health *before* stopping the replica
check replication

2) Stop replica container (no password needed here)
echo "[$(date)] Stopping ${REPLICA_SERVICE} container..."
docker-compose stop "“${REPLICA_ SERVICE}"

3) Create tar.gz backup
TIMESTAMP="$ (date +%Y%m%d-%H%M%S) "
BACKUP_FILE="${BACKUP_DIR}/mysql-replica-${TIMESTAMP}.tar.gz"

echo "[$(date)] Creating tar.gz from ${REPLICA_DATA DIR} ->
${BACKUP_FILE}..."
tar -czf "${BACKUP_FILE}" -C "${REPLICA_DATA_DIR}"

echo "[$(date)] Backup archive created: ${BACKUP_FILE}"

4) Rotate old backups

echo "[$(date)] Rotating old backups (keeping last ${MAX_BACKUPS})..."
mapfile -t BACKUPS 1s -1t "${BACKUP_DIR}"/mysql-replica-*.tar.gz

2>/dev/null true

${#BACKUPS[@]} > MAX_BACKUPS ;

f "${BACKUPS[@] : MAX_BACKUPS}";
echo "[$(date)] Deleting old backup: ${f}"
rm -f -- "${f}"

echo "[$(date)] Backup finished successfully."”

pswiki - http://wiki.psuter.ch/

Last update:

i icati -JJwiki ?id= i icati =
13.11.2025 08:56 mysql_backups_using_replication http://wiki.psuter.ch/doku.php?id=mysql_backups_using_replication&rev=1763020562

NOTE you may want to use gz instead of bz2 in case it takes too long

here is the cron job:
© */2 * * * /opt/dbbackup.sh >> /var/log/dbbackup.log 2>&1

add the dbbackup.log to your logrotate config

From:
http://wiki.psuter.ch/ - pswiki

Permanent link: = 4y
http://wiki.psuter.ch/doku.php?id=mysql_backups_using_replication&rev=1763020562 ..z

Last update: 13.11.2025 08:56

http://wiki.psuter.ch/ Printed on 12.02.2026 08:51

http://wiki.psuter.ch/
http://wiki.psuter.ch/doku.php?id=mysql_backups_using_replication&rev=1763020562

	mysql backups using replication
	Backup and Monitoring

