12.02.2026 07:16 1/8 mysql backups using replication

mysql backups using replication

if you want to create clean, consistent backups of a mysql (or mariadb) database without stopping the
live database, consider using a replica server which you can then shut down, take a backup and then
start again. besides producing nice and consistent backups, this will also have almost no performance
impact on the live database, especially if myisam tables are used which would block writes with
almost any other backup method

in my case i had a docker-compose.yml which contains the php web app and a mysql server service. i
first copied the service in the docker-compose.yml file to a mysql-replica service, so that the
respective sections look like this:

mysql:
image: mysql:8.0
build:
context: ./mysql/
dockerfile: Dockerfile
environment:
- MYSQL RANDOM ROOT PASSWORD=yes
- TZ=Europe/Zurich
restart: always
volumes:
- ./data/mysql:/var/lib/mysql
- ./conf/mysql:/etc/mysql/conf.d
user: '1002:1002'
cap_add: [SYS NICE]
networks:
- internal
mysql-replica:
image: mysql:8.0
build:
context: ./mysql/
dockerfile: Dockerfile
environment:
- MYSQL RANDOM ROOT PASSWORD=yes
- TZ=Europe/Zurich
restart: always
volumes:
- ./data/mysql-replica:/var/lib/mysql
- ./conf/mysql-replica:/etc/mysql/conf.d
user: '1002:1002'
cap_add: [SYS NICE]
networks:
- internal

basically make sure both are the same and make sure they can use different data directories and
different config files.

for the primary server, make sure the config contains the following settings:

pswiki - http://wiki.psuter.ch/

Last update:

13.11.2025 00:13 mysql_backups_using_replication http://wiki.psuter.ch/doku.php?id=mysql_backups_using_replication&rev=1762989188

[mysqld]
server-id = 1

binary logging for replication
log bin = mysql-bin
binlog format = ROW

GTID-based replication

gtid mode = ON
enforce gtid consistency = ON
log slave updates = ON

optional but recommended
binlog expire logs seconds = 604800 # 7 days

and on the replica the settings should look like this:

[mysqld]
server-id = 2
relay log = relay-bin

keep binlog on replica too (useful for cascading replication, backups,
etc.)

log bin = mysql-bin

binlog format = ROW

gtid mode = ON
enforce gtid consistency = ON
log slave updates = ON

make it read-only for safety
read only = ON
super read only = ON

don't auto-start replication until we finish setup
skip slave start = ON

on the primary server which is still running, create a replica user. use a password of max. 32
charcters length.

docker-compose exec mysql mysql -uroot -psecretrootpassword
CREATE USER 'repl'@'%s' IDENTIFIED BY 'replicationpassword’;

GRANT REPLICATION SLAVE, REPLICATION CLIENT ON *.* TO 'repl'@'S’';
FLUSH PRIVILEGES;

now stop all containers and copa the mysql data directory from the primary to the replica container
data storage path:

http://wiki.psuter.ch/ Printed on 12.02.2026 07:16

12.02.2026 07:16 3/8 mysql backups using replication

rsync -av data/mysql/ data/mysql-replica/
make sure new db server gets new uuid:
rm ./data/mysql-replica/auto.cnf

now start both database containers. make sure they are both started and running.

set up to replicatoin. connect to the replica server first
docker-compose exec mysql-replica mysql -uroot -psecretrootpassword
STOP REPLICA; -- or STOP SLAVE;

CHANGE REPLICATION SOURCE TO
SOURCE_HOST "'mysql’',
SOURCE_PORT = 3306,
SOURCE USER = 'repl',
SOURCE PASSWORD = 'replicationpassword',
SOURCE_AUTO POSITION = 1,
GET SOURCE PUBLIC KEY = 1;

START REPLICA; -- or START SLAVE;

check the replication status:

SHOW REPLICA STATUS\G -- or SHOW SLAVE STATUS\G;
If all went well, you should see:

Replica IO Running: Yes

Replica SQL Running: Yes

Seconds Behind Source: 0 (after it’s caught up)

you can also see the the executed and retrieved Gtid dataset, they should update as the master is
writing data to the db.

Backup and Monitoring

now lets create a backup script. this script will first check if the replication is still running and updated
before it shuts down the replica container and creates a tar.gz file of the database data directory. on
success, it will notify a uptime kuma push monitor.

for this to work we first need to create a monitoring user on the master database which will then
auto sync to the read-only replica database as well.

docker-compose exec mysql mysql -uroot -psecretrootpassword

pswiki - http://wiki.psuter.ch/

Last update:
13.11.2025 00:13
CREATE USER 'monitor'@'s%s' IDENTIFIED BY 'monitor-password’;
GRANT REPLICATION CLIENT ON *.* TO 'monitor'@'s';

FLUSH PRIVILEGES;

mysql_backups_using_replication http://wiki.psuter.ch/doku.php?id=mysql_backups_using_replication&rev=1762989188

to test if it is working, run the following query on the replica mysql server this time:

docker-compose exec mysql-replica mysql -umonitor -pmonitor-password -e
"SHOW SLAVE STATUS\G"

this should show the same output we saw previously when setting up the replication.

and here is the script that does it all. it only sends a heartbeat update to the uptime kuma push
monitor when the backup is successful AND the replica server was replicating prior to stopping it and
backing it up. obviously you need to adjust the user parameters at the begining of the script:

#!/usr/bin/env bash
-euo pipefail

HHARBR AR B R A A B R AR B R R AR RRAHRBAHRH R AR BB A HSRH
Settings
HHUEHHH SRS H RS H RS

Directory where your docker-compose.yml lives
COMPOSE DIR="/path/to/your/project" # <-- CHANGE THIS

Name of the replica service in docker-compose
REPLICA SERVICE="mysql-replica"

Where the replica's data directory is on the host
REPLICA DATA DIR="${COMPOSE_DIR}/data/mysql-replica"

Where to store backups
BACKUP_DIR="/backup"

How many backups to keep
MAX_ BACKUPS=24

Uptime Kuma

UPTIME SERVER="my.server.net" # <-- CHANGE THIS

ENTITY ID="YOUR ENTITY ID HERE" # <-- CHANGE THIS (create new monitor
of type "push" and copy the id from there)

Monitoring DB user (created on the PRIMARY, replicated to replica)
MONITOR USER="monitor"
MONITOR PASSWORD="monitor-password" # <-- CHANGE THIS or move to env

State file to track last Executed Gtid Set
STATE DIR="${BACKUP_DIR}/.state"
LAST GTID FILE="${STATE_DIR}/last gtid"

http://wiki.psuter.ch/ Printed on 12.02.2026 07:16

12.02.2026 07:16 5/8 mysql backups using replication

B e L R L
Globals
B R R Rt Rt

START TS=$(date +%s
REPL_WARN=0 # 0=0K, l=replication issue detected

mkdir -p "${BACKUP_DIR}" "${STATE_DIR}"

B L e o L e
Functions
HUHHHH AR H

check replication
echo "[$(date)] Checking replication status on ${REPLICA_SERVICE}..."

Get SHOW SLAVE STATUS output
local status
status=$(docker-compose -f "${COMPOSE_DIR}/docker-compose.yml" exec -T
"${REPLICA_SERVICE}" \
mysql -u"${MONITOR USER}" -p"${MONITOR PASSWORD}" -e "SHOW SLAVE
STATUS\G" 2>/dev/null true

if -z "${status}" ; then
echo "[$(date)] WARNING: SHOW SLAVE STATUS returned nothing. Replication
may not be configured."
REPL WARN=1
return
fi

Parse key fields
local io _running sql running seconds behind executed gtid

io running=$(printf '%s\n' "${status}" awk -F: '/Slave I0 Running/
{gsub(/~[\tl+/, "", $2); print $2}'

sql_running=$(printf '%s\n' "${status}" | awk -F: '/Slave SQL Running/
{gsub(/~[\tl+/, "", $2); print $2}'

seconds behind=$(printf '%s\n' "${status}" awk -F:
'/Seconds Behind Master/ {gsub(/~[\tl+/, "", $2); print $2}'

executed gtid=$(printf '%s\n' "${status}" | awk -F: '/Executed Gtid Set/
{sub(/~[\tl+/, "", $2); print $2}'

echo "[$(date)] Slave IO Running=${io_running},
Slave SQL Running=${sql_running}, Seconds Behind Master=${seconds behind}"

Basic health check

if "${io_running}" '= "Yes" "${sql_running}" '= "Yes" ; then
echo "[$(date)] WARNING: Replication threads not running correctly."
REPL WARN=1

fi

pswiki - http://wiki.psuter.ch/

Last update:

13.11.2025 00:13 mysql_backups_using_replication http://wiki.psuter.ch/doku.php?id=mysql_backups_using_replication&rev=1762989188

Check if replication advanced since last backup (via Executed Gtid Set)
-n "${executed_gtid}" ;
-f "${LAST_GTID_FILE}" ;
local prev gtid
prev_gtid=$(<"${LAST_GTID_FILE}"
"${prev_gtid}" == "${executed_gtid}" ;
echo "[$(date)] WARNING: Executed Gtid Set unchanged since last
backup — replication may be stuck."
REPL_WARN=1

echo "[$(date)] Replication has advanced since last backup."”

echo "[$(date)] No previous GTID file — this is probably the first
backup."

Update GTID state for next run
printf 'ss\n' "${executed_gtid}" "${LAST_GTID FILE}"

echo "[$(date)] WARNING: Executed Gtid Set is empty."
REPL_WARN=1

send uptime ping
local end ts
end ts=$(date +%s
local walltime=$((end ts - START TS

local status="up"
local msg="0K"

msg="¢${msg// /_}"

local
url="https://${UPTIME_SERVER}/api/push/${ENTITY_ID}?status=${status}&msg=${m
sg}&ping=${walltime}"

echo "[$(date)] Sending uptime ping: ${url}"
curl -fsS "${url}"” dev/null 2=41 echo "[$(date)] WARNING: failed to
send uptime ping"

on exit
local exit code="$1"
echo "[$(date)] Starting ${REPLICA_SERVICE} container again..."
docker-compose -f "${COMPOSE_DIR}/docker-compose.yml" start
"${REPLICA_ SERVICE}" \
echo "[$(date)] WARNING: failed to start ${REPLICA_SERVICE}"

http://wiki.psuter.ch/ Printed on 12.02.2026 07:16

12.02.2026 07:16 7/8 mysql backups using replication

Only send ping if:

- script exited successfully (exit code == 0)
- replication checks reported no issues (REPL WARN == 0)
"${exit_code}" -eq 0 "${REPL_WARN}" -eq 0O ;

send uptime ping

echo "[$(date)] Not sending uptime ping (exit code=${exit_code},
REPL WARN=${REPL_WARN})."

trap 'on exit $?' EXIT

HHHB R AR H BB AR R AR R R
Main
HIH A H AR AR B SH AR H SRS

echo "[$(date)] Starting MySQL replica backup..."
cd "${COMPOSE_DIR}"

1) Check replication health *before* stopping the replica
check replication

2) Stop replica container (no password needed here)
echo "[$(date)] Stopping ${REPLICA_SERVICE} container..."
docker-compose stop "“${REPLICA_ SERVICE}"

3) Create tar.bz2 backup
TIMESTAMP="$ (date +%Y%m%d-%H%M%S) "
BACKUP_FILE="${BACKUP_DIR}/mysql-replica-${TIMESTAMP}.tar.bz2"

echo "[$(date)] Creating tar.bz2 from ${REPLICA_DATA DIR} ->
${BACKUP_FILE}..."
tar -cjf "${BACKUP_FILE}" -C "${REPLICA_DATA_DIR}"

echo "[$(date)] Backup archive created: ${BACKUP_FILE}"

4) Rotate old backups

echo "[$(date)] Rotating old backups (keeping last ${MAX_BACKUPS})..."
mapfile -t BACKUPS 1s -1t "${BACKUP_DIR}"/mysql-replica-*.tar.bz2

2>/dev/null true

${#BACKUPS[@]} > MAX_BACKUPS ;

f "${BACKUPS[@] : MAX_BACKUPS}";
echo "[$(date)] Deleting old backup: ${f}"
rm -f -- "${f}"

echo "[$(date)] Backup finished successfully."”

pswiki - http://wiki.psuter.ch/

Last update:

13.11.2025 00:13 mysql_backups_using_replication http://wiki.psuter.ch/doku.php?id=mysql_backups_using_replication&rev=1762989188

From:
http://wiki.psuter.ch/ - pswiki

Permanent link:
http://wiki.psuter.ch/doku.php?id=mysql_backups_using_replication&rev=1762989188

Last update: 13.11.2025 00:13

http://wiki.psuter.ch/ Printed on 12.02.2026 07:16

http://wiki.psuter.ch/
http://wiki.psuter.ch/doku.php?id=mysql_backups_using_replication&rev=1762989188

	mysql backups using replication
	Backup and Monitoring

