13.11.2025 12:22 1/4 mysql backups using replication

mysql backups using replication

if you want to create clean, consistent backups of a mysql (or mariadb) database without stopping the
live database, consider using a replica server which you can then shut down, take a backup and then
start again. besides producing nice and consistent backups, this will also have almost no performance
impact on the live database, especially if myisam tables are used which would block writes with
almost any other backup method

in my case i had a docker-compose.yml which contains the php web app and a mysql server service. i
first copied the service in the docker-compose.yml file to a mysql-replica service, so that the
respective sections look like this:

mysql:
image: mysql:8.0
build:
context: ./mysql/
dockerfile: Dockerfile
environment:
- MYSQL RANDOM ROOT PASSWORD=yes
- TZ=Europe/Zurich
restart: always
volumes:
- ./data/mysql:/var/lib/mysql
- ./conf/mysql:/etc/mysql/conf.d
user: '1002:1002'
cap_add: [SYS NICE]
networks:
- internal
mysql-replica:
image: mysql:8.0
build:
context: ./mysql/
dockerfile: Dockerfile
environment:
- MYSQL RANDOM ROOT PASSWORD=yes
- TZ=Europe/Zurich
restart: always
volumes:
- ./data/mysql-replica:/var/lib/mysql
- ./conf/mysql-replica:/etc/mysql/conf.d
user: '1002:1002'
cap_add: [SYS NICE]
networks:
- internal

basically make sure both are the same and make sure they can use different data directories and
different config files.

for the primary server, make sure the config contains the following settings:

pswiki - http://wiki.psuter.ch/

Last update:

12.11.2025 23:57 mysql_backups_using_replication http://wiki.psuter.ch/doku.php?id=mysql_backups_using_replication&rev=1762988257

[mysqld]
server-id = 1

binary logging for replication
log bin = mysql-bin
binlog format = ROW

GTID-based replication

gtid mode = ON
enforce gtid consistency = ON
log slave updates = ON

optional but recommended
binlog expire logs seconds = 604800 # 7 days

and on the replica the settings should look like this:

[mysqld]
server-id = 2
relay log = relay-bin

keep binlog on replica too (useful for cascading replication, backups,
etc.)

log bin = mysql-bin

binlog format = ROW

gtid mode = ON
enforce gtid consistency = ON
log slave updates = ON

make it read-only for safety
read only = ON
super read only = ON

don't auto-start replication until we finish setup
skip slave start = ON

on the primary server which is still running, create a replica user. use a password of max. 32
charcters length.

docker-compose exec mysql mysql -uroot -psecretrootpassword
CREATE USER 'repl'@'%s' IDENTIFIED BY 'replicationpassword’;

GRANT REPLICATION SLAVE, REPLICATION CLIENT ON *.* TO 'repl'@'S’';
FLUSH PRIVILEGES;

now stop all containers and copa the mysql data directory from the primary to the replica container
data storage path:

http://wiki.psuter.ch/ Printed on 13.11.2025 12:22

13.11.2025 12:22 3/4 mysql backups using replication

rsync -av data/mysql/ data/mysql-replica/
make sure new db server gets new uuid:
rm ./data/mysql-replica/auto.cnf

now start both database containers. make sure they are both started and running.

set up to replicatoin. connect to the replica server first
docker-compose exec mysql-replica mysql -uroot -psecretrootpassword
STOP REPLICA; -- or STOP SLAVE;

CHANGE REPLICATION SOURCE TO
SOURCE_HOST "'mysql’',
SOURCE_PORT = 3306,
SOURCE USER = 'repl',
SOURCE PASSWORD = 'replicationpassword',
SOURCE_AUTO POSITION = 1,
GET SOURCE PUBLIC KEY = 1;

START REPLICA; -- or START SLAVE;

check the replication status:

SHOW REPLICA STATUS\G -- or SHOW SLAVE STATUS\G;
If all went well, you should see:

Replica IO Running: Yes

Replica SQL Running: Yes

Seconds Behind Source: 0 (after it’s caught up)

you can also see the the executed and retrieved Gtid dataset, they should update as the master is
writing data to the db.

Headline

now lets create a backup script. this script will first check if the replication is still running and updated
before it shuts down the replica container and creates a tar.gz file of the database data directory. on
success, it will notify a uptime kuma push monitor.

for this to work we first need to create a monitoring user on the master database which will then
auto sync to the read-only replica database as well.

docker-compose exec mysql mysql -uroot -psecretrootpassword

pswiki - http://wiki.psuter.ch/

Last update:

12.11.2025 23:57 mysql_backups_using_replication http://wiki.psuter.ch/doku.php?id=mysql_backups_using_replication&rev=1762988257

CREATE USER 'monitor'@'s%s' IDENTIFIED BY 'monitor-password’;
GRANT REPLICATION CLIENT ON *.* TO 'monitor'@'s';
FLUSH PRIVILEGES;

to test if it is working, run the following query on the replica mysql server this time:

docker-compose exec mysql-replica mysql -umonitor -pmonitor-password -e
"SHOW SLAVE STATUS\G"

this should show the same output we saw previously when setting up the replication.

From:
http://wiki.psuter.ch/ - pswiki

Permanent link: =
http://wiki.psuter.ch/doku.php?id=mysql_backups_using_replication&rev=1762988257 ..zis:

Last update: 12.11.2025 23:57

http://wiki.psuter.ch/ Printed on 13.11.2025 12:22

http://wiki.psuter.ch/
http://wiki.psuter.ch/doku.php?id=mysql_backups_using_replication&rev=1762988257

	mysql backups using replication
	Headline

