13.11.2025 10:21 1/11 mysql backups using replication

mysql backups using replication

if you want to create clean, consistent backups of a mysql (or mariadb) database without stopping the
live database, consider using a replica server which you can then shut down, take a backup and then
start again. besides producing nice and consistent backups, this will also have almost no performance
impact on the live database, especially if myisam tables are used which would block writes with
almost any other backup method

in my case i had a docker-compose.yml which contains the php web app and a mysql server service. i
first copied the service in the docker-compose.yml file to a mysql-replica service, so that the
respective sections look like this:

mysql:
image: mysql:8.0
build:
context: ./mysql/
dockerfile: Dockerfile
environment:
- MYSQL RANDOM ROOT PASSWORD=
- TZ=Europe/Zurich
restart: always
volumes:
- ./data/mysql:/var/lib/mysql
- ./conf/mysql:/etc/mysql/conf.d
user: '1002:1002'
cap_add: SYS NICE
networks:
- internal
mysql-replica:
image: mysql:8.0
build:
context: ./mysql/
dockerfile: Dockerfile
environment:
- MYSQL RANDOM ROOT PASSWORD=
- TZ=Europe/Zurich
restart: always
volumes:
- ./data/mysql-replica:/var/lib/mysql
- ./conf/mysql-replica:/etc/mysql/conf.d
user: '1002:1002'
cap_add: SYS NICE
networks:
- internal

basically make sure both are the same and make sure they can use different data directories and
different config files.

for the primary server, make sure the config contains the following settings:

pswiki - http://wiki.psuter.ch/

Last update: 13.11.2025 09:20 mysql_backups_using_replication http://wiki.psuter.ch/doku.php?id=mysql_backups_using_replication

[mysqld]
server-id = 1

binary logging for replication
log bin = mysql-bin
binlog format = ROW

GTID-based replication

gtid mode = ON
enforce gtid consistency = ON
log slave updates = ON

optional but recommended
binlog expire logs seconds = 604800 # 7 days

and on the replica the settings should look like this

[mysqld]
server-id = 2
relay log = relay-bin

disable binary logging as we don't need this on the replica
skip-log-bin

GTID functionality is needed for replication
gtid mode = ON
enforce gtid consistency = ON

make it read-only for safety
read only = ON
super _read only = ON

don't auto-start replication until we finish setup
then comment this out

skip _slave start = ON

on the primary server which is still running, create a replica user. use a password of max. 32
charcters length.

docker-compose exec mysql mysql -uroot -psecretrootpassword
CREATE USER 'repl'@'%' IDENTIFIED BY 'replicationpassword';

GRANT REPLICATION SLAVE, REPLICATION CLIENT ON *.* TO 'repl'@'S';
FLUSH PRIVILEGES;

now stop all containers and copa the mysql data directory from the primary to the replica container
data storage path:

rsync -av data/mysql/ data/mysql-replica/

http://wiki.psuter.ch/ Printed on 13.11.2025 10:21

13.11.2025 10:21 3/11 mysql backups using replication

make sure new db server gets new uuid:

rm ./data/mysql-replica/auto.cnf

now start both database containers. make sure they are both started and running.

set up to replicatoin. connect to the replica server first

docker-compose exec mysql-replica mysql -uroot -psecretrootpassword
STOP REPLICA; -- or STOP SLAVE;

CHANGE REPLICATION SOURCE TO

SOURCE_HOST = 'mysql’,
SOURCE_PORT = 3306,
SOURCE_USER = 'repl',

SOURCE_PASSWORD = 'replicationpassword’,
SOURCE AUTO POSITION = 1,
GET SOURCE PUBLIC KEY = 1;

START REPLICA; -- or START SLAVE;

check the replication status:

SHOW REPLICA STATUS\G -- or SHOW SLAVE STATUS\G;
If all went well, you should see:

Replica IO Running: Yes

Replica SQL Running: Yes

Seconds Behind Source: 0 (after it'’s caught up)

you can also see the the executed and retrieved Gtid dataset, they should update as the master is
writing data to the db.

now remove the skip slave start = ON line or comment it out in the conf/mysql-
replica/replica.cnf file and restart the container, then re-check if it is still syncing.

Backup and Monitoring

now lets create a backup script. this script will first check if the replication is still running and updated
before it shuts down the replica container and creates a tar.gz file of the database data directory. on
success, it will notify a uptime kuma push monitor.

for this to work we first need to create a monitoring user on the master database which will then
auto sync to the read-only replica database as well.

docker-compose exec mysql mysql -uroot -psecretrootpassword

pswiki - http://wiki.psuter.ch/

Last update: 13.11.2025 09:20 mysql_backups_using_replication http://wiki.psuter.ch/doku.php?id=mysql_backups_using_replication

CREATE USER 'monitor'@'%' IDENTIFIED BY 'monitor-password';
GRANT REPLICATION CLIENT ON *.* TO 'monitor'@'s';
FLUSH PRIVILEGES;

to test if it is working, run the following query on the replica mysql server this time:

docker-compose exec mysql-replica mysql -umonitor -pmonitor-password -e
"SHOW SLAVE STATUS\G"

this should show the same output we saw previously when setting up the replication.

and here is the script that does it all. it only sends a heartbeat update to the uptime kuma push
monitor when the backup is successful AND the replica server was replicating prior to stopping it and
backing it up. obviously you need to adjust the user parameters at the begining of the script:

#!/usr/bin/env bash
-euo pipefail

il b b S S b i S S
Settings
b itidi g b i g g Sk b g g ik S

Directory where your docker-compose.yml lives
COMPOSE DIR="/opt/buchmann-prod" # <-- CHANGE THIS

Name of the replica service in docker-compose
REPLICA SERVICE="mysql-replica"

Where the replica's data directory is on the host
REPLICA DATA DIR="${COMPOSE DIR}/data/mysql-replica"

Where to store backups
BACKUP_DIR="/backup"

How many backups to keep
MAX BACKUPS=24

Uptime Kuma entity ID
ENTITY ID="2N88TDy5YeCX7n3cJD5Wok9DNZhdRlw6" # <-- CHANGE THIS

Monitoring DB user (created on the PRIMARY, replicated to replica)
MONITOR USER="monitor"

MONITOR PASSWORD="jookeg4ahrOeidienaiGhe8nieGolu" # <-- CHANGE THIS or
move to env

State file to track last Executed Gtid Set
STATE DIR="${BACKUP_DIR}/.state"
LAST GTID FILE="${STATE_DIR}/last gtid"

B s e S
Globals

http://wiki.psuter.ch/ Printed on 13.11.2025 10:21

13.11.2025 10:21 5/11 mysql backups using replication

HEHARBH AR H ARG H AR H AR H ARG H AR H AR H AR R H

START TS=$%$(date +%s
REPL WARN=0 # 0=0K, I=replication issue detected

mkdir -p "${BACKUP_DIR}" "${STATE_DIR}"

HHHB R R AR H BB RH BB
Functions
B s e

check replication
echo "[$(date)] Checking replication status on ${REPLICA_SERVICE}..."

Get SHOW SLAVE STATUS output

local status

status=$(docker-compose -f "${COMPOSE_DIR}/docker-compose.yml" exec -T
"${REPLICA_SERVICE}" \

mysql -u"${MONITOR_USER}" -p"${MONITOR_PASSWORD}" -e "SHOW SLAVE
STATUS\G" 2>/dev/null true

-z "${status}" ;
echo "[$(date)] WARNING: SHOW SLAVE STATUS returned nothing. Replication
may not be configured."
REPL_WARN=1
return

Parse key fields
local io running sql running seconds behind executed gtid

io running=$(printf ‘'S%s\n' "${status}"” awk -F: '/Slave I0 Running/
{gsub(/~[\tl+/, "", $2); print $2}'

sql _running=$(printf 'Sss\n' "${status}" | awk -F: '/Slave SQL Running:/
{gsub(/~[\tl+/, "", $2); print $2}'

seconds behind=$(printf '%s\n' "${status}" awk -F:
'/Seconds Behind Master/ {gsub(/~[\tl+/, "", $2); print $2}'

executed gtid=$

printf '%s\n' "${status}" \

sed -n 's/™ *Executed Gtid Set:[[:space:]]*//p'

echo "[$(date)] Slave IO Running=${io_running},
Slave SQL Running=${sql_running}, Seconds Behind Master=${seconds_behind}"

Basic health check

"${io_running}" !'= "Yes" "${sql_running}" '= "Yes" ;
echo "[$(date)] WARNING: Replication threads not running correctly."
REPL_WARN=1

Check if replication advanced since last backup (via Executed Gtid Set)

pswiki - http://wiki.psuter.ch/

Last update: 13.11.2025 09:20 mysql_backups_using_replication http://wiki.psuter.ch/doku.php?id=mysql_backups_using_replication

-n "${executed gtid}" ;
-f "${LAST_GTID_FILE}" ;
local prev gtid
prev gtid=$(<"${LAST_GTID_FILE}"
"${prev_gtid}" == "${executed gtid}" ;
echo "[$(date)] WARNING: Executed Gtid Set unchanged since last
backup — replication may be stuck."”
REPL WARN=1

echo "[$(date)] Replication has advanced since last backup."

echo "[$(date)] No previous GTID file — this is probably the first
backup."

Update GTID state for next run
printf '%ss\n' "${executed gtid}" "${LAST_GTID FILE}"

echo "[$(date)] WARNING: Executed Gtid Set is empty."
REPL WARN=1

send uptime ping
local end ts
end ts=$(date +%s
local walltime=$((end ts - START TS

local status="up"
local msg="0K"

msg="${msg// /_}"

local
url="https://uptime.dalco.ch/api/push/${ENTITY_ID}?status=${status}&msg=${ms
g}&ping=${walltime}"

echo "[$(date)] Sending uptime ping: ${url}"
curl -fsS "${url}" dev/null 2=&1 echo "[$(date)] WARNING: failed to
send uptime ping"

on exit
local exit code="$1"
echo "[$(date)] Starting ${REPLICA_SERVICE} container again..."
docker-compose -f "${COMPOSE_DIR}/docker-compose.yml" start
"${REPLICA_SERVICE}" \
echo "[$(date)] WARNING: failed to start ${REPLICA_SERVICE}"

Only send ping if:
- script exited successfully (exit code == 0)

http://wiki.psuter.ch/ Printed on 13.11.2025 10:21

13.11.2025 10:21 7/11 mysql backups using replication

- replication checks reported no issues (REPL WARN == 0)
"${exit_code}" -eq 0 "${REPL_WARN}" -eq 0O ;
send uptime ping

echo "[$(date)] Not sending uptime ping (exit code=${exit_code},
REPL WARN=${REPL_WARN}) ."

trap 'on exit $?' EXIT

HHHBHHHHHHH R R B R BB R
Main
HHHB R AR H BB AR R AR R R

echo "[$(date)] Starting MySQL replica backup..."
cd "${COMPOSE_DIR}"

1) Check replication health *before* stopping the replica
check replication

2) Stop replica container (no password needed here)
echo "[$(date)] Stopping ${REPLICA_SERVICE} container..."
docker-compose stop "${REPLICA_SERVICE}"

3) Create tar.gz backup
TIMESTAMP="$ (date +%Y%m%d -%H%M%S) "
BACKUP FILE="${BACKUP_DIR}/mysql-replica-${TIMESTAMP}.tar.gz"

echo "[$(date)] Creating tar.gz from ${REPLICA_DATA_DIR} ->
${BACKUP_FILE}..."
tar -czf "${BACKUP_FILE}" -C "${REPLICA_DATA_DIR}"

echo "[$(date)] Backup archive created: ${BACKUP_FILE}"

4) Rotate old backups

echo "[$(date)] Rotating old backups (keeping last ${MAX_BACKUPS})..."
mapfile -t BACKUPS 1s -1t "${BACKUP_DIR}"/mysql-replica-*.tar.gz

2>/dev/null true

${#BACKUPS[@]} > MAX_BACKUPS ;

f "${BACKUPS[@] : MAX_BACKUPS}";
echo "[$(date)] Deleting old backup: ${f}"
rm -f -- "${f}"

echo "[$(date)] Backup finished successfully."

NOTE you may want to use gz instead of bz2 in case it takes too long

pswiki - http://wiki.psuter.ch/

Last update: 13.11.2025 09:20 mysql_backups_using_replication http://wiki.psuter.ch/doku.php?id=mysql_backups_using_replication

here is the cron job:
0 */2 * * * /opt/dbbackup.sh >> /var/log/dbbackup.log 2>&1

add the dbbackup.log to your logrotate config

replica check script

here is a script to quickly check if the replica is working and up to date.. useful when messing around
with the config for example or for monitoring purposes other than through the bakcup script:

checkReplica.sh

#!/usr/bin/env bash
set -euo pipefail

HRUHH AR S
Settings
HRUHHHHHRHH B H AR RS HHH R RS HHHR RS HHHR Y

Directory where your docker-compose.yml lives
COMPOSE DIR="/path/to/your/project" # <-- CHANGE THIS

Name of the replica service in docker-compose
REPLICA SERVICE="mysql-replica"

Monitoring DB user (created on PRIMARY, replicated to replica)
MONITOR USER="monitor"
MONITOR PASSWORD="monitor-password" # <-- CHANGE THIS

HARHH AR BB HH AR B HH AR B HH AR SR AR H AR H R
Colors
B R R L

if -t 1]; then

RED="$(printf '\e[31m')"

GREEN="¢$(printf '\e[32m')"

YELLOW="$(printf '\e[33m')"

BOLD="$(printf '\e[1lm')"

RESET="$(printf '\e[Om')"
else

RED=""; GREEN=""; YELLOwW=""; BOLD=""; RESET=""
fi

HUUHHH RS
Helper
HURHHHRHH R HH AR AR R

Extract "Value" from lines like:

http://wiki.psuter.ch/ Printed on 13.11.2025 10:21

http://wiki.psuter.ch/doku.php?do=export_code&id=mysql_backups_using_replication&codeblock=8

13.11.2025 10:21 9/11 mysql backups using replication

" Some Field: Value"
get field
local key="$1"
printf 'S%s\n' "$STATUS" \
sed -n "s/"[[:space:]]1*${key}:[[:space:]]*//p" \
head -nl

B s e e
Main
HUHA SRR A H IR SRS R RS HSHS SRS

cd "${COMPOSE_DIR}"

Try SHOW REPLICA STATUS first (MySQL 8+), fall back to SHOW SLAVE
STATUS (older)
STATUS=$ (docker-compose -f "${COMPOSE_DIR}/docker-compose.yml" exec -T
"${REPLICA_SERVICE}" \

mysql -u"${MONITOR_USER}" -p"${MONITOR_PASSWORD}" -e "SHOW REPLICA
STATUS\G" 2>/dev/null true

-z "${STATUS}" ;
STATUS=$ (docker-compose -f "${COMPOSE_DIR}/docker-compose.yml" exec -
T "${REPLICA_SERVICE}" \
mysql -u"${MONITOR USER}" -p"${MONITOR_PASSWORD}" -e "SHOW SLAVE
STATUS\G" 2>/dev/null true

-z "${STATUS}" .
echo "${RED}${BOLD}ERROR:${RESET} No replication status found."

echo " - Is ${REPLICA_SERVICE} configured as a replica?"
echo " - Is MySQL running in that container?"
exit 1

I0 / SQL thread status (new names first, fall back to old)
I0 Running=$(get field "Replica IO Running"
-z "${I0 Running}" ;
I0 Running=$(get field "Slave IO Running"

SQL Running=%$(get field "Replica SQL Running"
-z "${SQL_Running}" ;
SQL Running=$(get field "Slave SQL Running"

Seconds behind (new name first, fall back)
Seconds Behind=$(get field "Seconds Behind Source"
-z "${Seconds Behind}" ;
Seconds Behind=$(get field "Seconds Behind Master"

pswiki - http://wiki.psuter.ch/

Last update: 13.11.2025 09:20 mysql_backups_using_replication http://wiki.psuter.ch/doku.php?id=mysql_backups_using_replication

GTID sets — allow indent before the key
Executed Gtid Set=$
printf '%s\n' "${STATUS}" \
sed -n 's/~[[:space:]]*Executed Gtid Set:[[:space:]]*//p' \
head -nl

Retrieved Gtid Set=$
printf '%ss\n' "${STATUS}" \
sed -n 's/~[[:space:]]*Retrieved Gtid Set:[[:space:]]*//p"' \
head -nl

Errors (names are the same on old/new)
Last IO Error=$(get field "Last IO Error"
Last SQL Error=$(get field "Last SQL Error"

B e R R kR e
Determine overall status
HAHHHH RS HHH AR SHH AR LSRR H AR RS SR

overall color="${GREEN}"
overall text="0K"

if "${I0_Running}" '= "Yes" "${SQL_Running}" '= "Yes" ; then
overall color="${RED}"
overall text="ERROR"
elif -z "${Seconds_Behind}" "${Seconds_Behind}" == "NULL" C
then
overall color="${YELLOW}"
overall text="UNKNOWN DELAY"
elif "${Seconds_Behind}" =~ ~[0-9]+$ "${Seconds_Behind}" -gt 300
; then
More than 5 minutes behind -> warn
overall color="${YELLOW}"
overall text="LAGGING"
fi

e e e e e e e e e e e
Output
g S S s S S e S e i

echo

echo "${BOLD}Replica status for service '${REPLICA_SERVICE}':${RESET}"
echo " Overall: ${overall_color}${overall text}${RESET}"

echo

echo " 1I0 thread: ${I0_Running: -<unknown>}"
echo " SQL thread: ${SQL_Running:-<unknown>}"

if -z "${Seconds_Behind}" "${Seconds_Behind}" == "NULL" ; then

http://wiki.psuter.ch/ Printed on 13.11.2025 10:21

13.11.2025 10:21 11/11 mysql backups using replication

echo " Delay: (unknown / NULL)"
echo " Delay: ${Seconds_Behind} seconds behind primary"
echo
echo " Retrieved GTID set:"
echo " ${Retrieved_Gtid_Set:-<none>}"
echo " Executed GTID set:"
echo " ${Executed Gtid Set:-<none>}"
echo
-n "${Last_IO Error}" "${Last_IO Error}" '= " " ;
echo "${RED} Last IO error:${RESET}"
echo " ${Last_IO Error}"
echo
-n "${Last_SQL_Error}" "${Last_SQL_Error}" '= " " ;
echo "${RED} Last SQL error:${RESET}"
echo " ${Last_SQL Error}"
echo

From:
http://wiki.psuter.ch/ - pswiki

Permanent link:
http://wiki.psuter.ch/doku.php?id=mysql_backups using_replication

Last update: 13.11.2025 09:20

pswiki - http://wiki.psuter.ch/

http://wiki.psuter.ch/
http://wiki.psuter.ch/doku.php?id=mysql_backups_using_replication

	mysql backups using replication
	Backup and Monitoring
	replica check script

