08.01.2026 19:41 1/11 MOBI Backup (rsync wrapper)

MOBI Backup (rsync wrapper)

like probably every Linux admin, | eventually came to the point where | felt like it was time to write
My Own Backup Implementation as an rsync wrapper to do some backups. This script is in its
funcitonality very similar to what rubi does: it creates a new sub-directory with the date of the backup
as directory each time the backup is run. every backup directory contains a full backup of the source,
but only the difference since the last backup does actually need to be synced. when i say the
difference i mean files that have changed.. yes, files, not blocks! so if your 2GB log file gets a new
line, 2GB will have to be downloaded. but if your file does not change, it will be hard-linked to the
previous backup and therefore nothing needs to be downloaded.

to achieve this, | use rsync's —link-dst option.

In most cases, this proves to be simple but still efficient enough, rather than trying block-level
incrementals.

One specialty of MOBI, and the main reason for writing this script in the first place, is that it runs
multiple backups in parallel. It has sort of its own queue manager to do that. It will take all Job
Definitions and put them in the queue and it will then run multiple in parallel. The number of parallel
backup processes can be defined by setting the PARALLELPROCS=8 variable in the script. Default is
8.

The advantage of running multiple backup jobs at once is, that you can usually reach a much higher
overall throughput with multiple rsyncs running in parallel than running them one after the other
because rsync is single threaded and the overhead for ssh and file checking etc. is huge. So it usually
makes no sense to wait for one host to complete before backing up a second host.

You could also define multiple backup jobs for the same host but different directories on the host, to
increase the speed of large backups.

if you are looking for a solution to speed up an rsync copy process with parallel rsync invocations,
take a look at my parallel_rsync article. Sadly the function | wrote there does not help in speeding up
incremental backups at all (in contrary, it adds more overhead and hence makes an incremental
backup even slower!).

at the end of a successful backup, a rotation is made and old backups are being deleted where
appropriate. also a summary email is sent to the admin.

Configuration

to configure, simply edit the lines or add more blocks after the

g
Backup Job Definitions start here ############HAHH#HHHHHHH
B i 1 8 B G B E GG G i

comment in the script. some lines above the comment you can find different config options mixed
with some code that should not be changed ;).. i know.. usability and such wasn't the main focus here
but instead i wanted to keep everything in a file and as simple as possible to read the code and

pswiki - http://wiki.psuter.ch/

http://wiki.psuter.ch/doku.php?id=backup_with_rubi
http://wiki.psuter.ch/doku.php?id=parallel_rsync

Last update: 16.02.2021 14:46 mobi_backup http://wiki.psuter.ch/doku.php?id=mobi_backup&rev=1613483204

modify it to your own needs.

the script will write a hidden file named .lastdst to the backup base directory for each backup job. this
file always contains the folder name of the sub directory of the last successful backup.

Logs and Debugging

the script writes multiple log files. First of all it writes a new log file for every invocation to
/tmp/<date-time>.log. this is a general log which contains information printed by the “queue
manager”. It then writes two log files for each backup job it runs. these can be found in the same
directory where these backup jobs are stored (defined by BASEDST) again with the start date and
time of the job. one ends on log the other one ends on .err. the . Log file contains the standard-
output of the process and the err file contains the standard-error output. so if copying a file failed for
example it should be listed in the err file.

Known Issues

in on systems with old rsync versions (i.e.) and if your data contains extended Attributes or ACL's you
may get lots of Missing abbreviated xattr value, trusted.SGI ACL DEFAULT messages
in your logs. Also your backup may get bloatet because files with ACL's or extended Attributes are
constantly re-downloaded. This is due to some issues with ACL and Xattr support in old rsync versions.
Either update to a newer version of Rsync or disable ACL and XATTR support by removing the -X and
-A options in the

the script

so here is the script.. use it at your own risk and let me know if you find bugs or have contributions to
make. simply send me an email to contact at psuter dot ch.

mobi.sh

#!/bin/bash

(c) Pascal Suter, DALCO AG, 2018. Use at your own risk

no use without prior permission from DALCO AG

pascal.suter@dalco.ch

the latest version and some documentation for this script can be
found on http://wiki.psuter.ch/doku.php?id=mobi backup

version 1.1

replaced ps aux | grep rsync style locking with flock locking to
allow this script to run on servers that use rsync for other stuff as
well :)

version 1.2

added eval in front of rsync call to properly evaluate the $0PTIONS
variable contents when running the command

version 1.3

http://wiki.psuter.ch/ Printed on 08.01.2026 19:41

http://wiki.psuter.ch/doku.php?do=export_code&id=mobi_backup&codeblock=1

08.01.2026 19:41 3/11 MOBI Backup (rsync wrapper)

moved log from rsyncs stderr to a separate .err file which makes
finding the relevant error messages in the rsync output alot easier

report

LOG=$1

error=0

get all jobs that where started

jobs= grep "~Backup of" $LOG | awk '{print $3}'

get all jobs that where successfully completed

successful jobs= grep ""Backup for .* completed successfully" $LOG

awk '{print $3,"finished on",$7,$8,%$9,%$10,%$11}"'
get all jbos that did not complete
failed jobs= grep ""Backup failed" $LOG | awk '{print $4,"stopped
on", $15,%$16,%$17,$18,$19,$20}" tr -d ", ()"

get remainig jobs without status report

remaining jobs="$jobs"

for job in "echo -e "$successful_ jobs" awk '{print $1}' ; do
remaining jobs= echo -e "$remaining_jobs" | sed -e "s/job//"

done

for job in "echo -e "$failed_jobs" | awk '{print $1}' ; do
remaining jobs= echo -e "$remaining jobs" | sed -e "s/job//"

done

remaining jobs= echo -e "$remaining jobs" | sed -e '/"$/d'

write a report summary

echo "#HHHHBHBHIHIH I
echo "Backup report for ${1}"

echo "#H##HHAHSHHHHHIH I

if "$remaining_jobs" = "" |; then
error=1
echo " "
echo "== Jobs in an unknown state (still running?) === "
echo " "
echo -e "$remaining_jobs"
fi
if "$failed_jobs" '= "" |; then
error=1
echo " .
echo "== Failed Jobs !
echo " "
echo -e "$failed_jobs"
fi
echo " !
echo "== Jobs successfully completed .
echo " !
echo -e "$successful_jobs"
echo " .
echo "== Jobs started !
echo " !

echo -e "$jobs"
if $error -gt 0]; then

pswiki - http://wiki.psuter.ch/

Last update: 16.02.2021 14:46 mobi_backup http://wiki.psuter.ch/doku.php?id=mobi_backup&rev=1613483204

SUBJECT="FAIL"

else
SUBJECT="SUCCESS"
fi
}
rotate() {

remove old backups and keep only a certain amount of consecutive
and monthly backups

parameters:

arg 1: number of successful consecutive backups to keep (max. 1
per day will be kept,

if there is more than one backup per day, the newest will
be kept, the rest will be deleted

arg 2: number of successful monhthly backups to keep

keeps last backup of the month starting on the month befor
the oldest
of the consecutive backups that have been kept back

arg 3: directory

olddir=" pwd"
numConsec=%$1
numMonthly=%$2
dir="¢3"
if [$numConsec -1t 1 |; then
echo "first argument of rotate() should be number of
consecutive backups to keep. number given was smaller than 1, this must
be a mistake!"
exit 1
fi

if [! -d "$dir"]; then
echo "the third argument of rotate() should be the backup
directory to clean up. the given directory does not exist"
exit 1
fi
cd "$dir"
echo "Starting Cleanup Process for “pwd "

get all successful backups
backups= grep -1 "completed successfully" *.log | sort | sed -e
's/.log$//""

keep the last $numConsec consecutive backups
keep= echo "$backups" | awk -F - '{print $1}' | grep -v -P ""\s*$"
| uniq | tail -n $numConsec

check if we even have more than $numConsec backups yet:

if ["echo "$backups" | wc -1 -1t $numConsec |; then
echo "we do not have enough backups to start deleting yet"
exit ©

http://wiki.psuter.ch/ Printed on 08.01.2026 19:41

08.01.2026 19:41 5/11 MOBI Backup (rsync wrapper)

get the oldest of the last $numConsec backups:
lastdate= echo "$keep" head -n 1

lastyear= echo $lastdate awk -F . '{print $1}'
lastmonth= echo $lastdate awk -F . '{print $2}'
lastday= echo $lastdate awk -F . '{print $3}'

calculate the last $numMonthly months to keep:
month=$lastmonth
year=$lastyear
i seq 1 $numMonthly ;
month="expr $month + 0
let month--
$month -1t 1 |;
month=12
let year--

month= printf "%02d\n" $month

keep= echo -e "$keep\n$year.$month"
keepdates=""
i $keep ;
latest= echo "$backups" | grep "~$i" | tail -n 1
keepdates= echo -e "$keepdates\n$latest”

keepdates= echo "$keepdates" grep -v -P "7\s*$"

delete="1s *.log | sed -e 's/.log$//' sort | uniq
delbackups=$backups
i $keepdates;
delete= echo "$delete" grep -v "$i"
delbackups="echo "$delbackups" | grep -v "$i"

delbackups= echo "$delbackups" grep -v -P ""\s*$"

echo "All Backups:"
echo "$backups"
echo "
echo "Backups to delete:"

echo "$delbackups"

echo " "
echo "Backups to keep:"

echo "$keepdates”

#sanity check before deleting backups: check if enough backups will
be left after deleting everything else

numBD= echo "$delbackups" wc -1

numBT= echo "$backups" | wc -1

pswiki - http://wiki.psuter.ch/

Last update: 16.02.2021 14:46 mobi_backup http://wiki.psuter.ch/doku.php?id=mobi_backup&rev=1613483204

survivors= expr $numBT - $numBD
$survivors -1t $numConsec |;
echo "ERROR: somehow too many backups would have been deletd,
this should not happen!, aborting"
exit 1

echo "$survivors backups will be left after deleting obsolete
backups"

echo "$delete" | xargs -I DDD /bin/bash -c 'echo "deleting DDD*";
rm -rf --one-file-system DDD*'
echo "cleanup complete for “pwd™"

run
echo "Backup of $BACKUPNAME was queud on Position $INTPROCID";
keepWaiting=1
$keepWaiting -gt 0 |;
keepWaiting=0
#check if enough processes that where launched before me have
finished for me to start my work
i=1; i<=$(expr $INTPROCID - $PARALLELPROCS); i++));
grep -c " $i " /dev/shm/backup finished -eq 0 |;

keepWaiting=1

#echo "waiting patiently to start the backup of $BACKUPNAME
with my ID $INTPROCID"
sleep 5

processes= lsof ${LOCKDIR}/* 2>/dev/null | grep -v flock | grep
backup | awk -F "{print $NF}' sort | uniq | wc -1

$processes -gt $PARALLELPROCS |;
echo "Waiting for another rsync to complete before I can start
with ${BACKUPNAME}."
sleep 10
processes= lsof ${LOCKDIR} 2>/dev/null grep -v flock | grep
backup | awk -F "{print $NF}' sort uniq | wc -1

echo "Starting Backup for ${BACKUPNAME} at "date " tee -a
${BASEDST}/${DSTDIR} .log
mkdir -p ${BASEDST}

read the .lastdst file and check if it is either empty (full

http://wiki.psuter.ch/ Printed on 08.01.2026 19:41

08.01.2026 19:41 7/11 MOBI Backup (rsync wrapper)

backup) or if it contains a valid directory (incremental backup).
#if it is not empty and the content is not the name of a directory,
the backup will be aborted

OLDDST=""cat $BASEDST/.lastdst 2>/dev/null "

go=1
if [-n "$OLDDST" |; then
if [! -d "${BASEDST}/${OLDDST}" |; then
echo "the given last destination $OLDDST does not exist,
will not proceed with the backup in order to not accidently do a full
backup"
go=0
fi
fi

if [$go -eq 1]; then
echo "flock -E 66 -n ${LOCKDIR}/${BACKUPNAME} rsync -aAHXv
${OPTIONS} --relative --delete --numeric-ids --bwlimit=${BWLIMIT} --
progress --link-dest="../${0OLDDST}" --one-file-system ${SOURCE}
${BASEDST}/current >> ${BASEDST}/${DSTDIR}.log
2>${BASEDST}/${DSTDIR}.err"
eval flock -E 66 -n ${LOCKDIR}/${BACKUPNAME} rsync -aAHXv
${OPTIONS} --relative --delete --numeric-ids --bwlimit=${BWLIMIT} --
progress --link-dest="../${OLDDST}" --one-file-system ${SOURCE}
${BASEDST}/current >> ${BASEDST}/${DSTDIR}.log
2>${BASEDST} /${DSTDIR} .err
ret=$?
else
ret=1
fi

if [$ret -eq 0 -0 $ret -eq 24]; then
mv ${BASEDST}/current ${BASEDST}/${DSTDIR}
echo -n ${DSTDIR} > ${BASEDST}/.lastdst
if [$ret -eq 0]; then
echo "Backup for ${BACKUPNAME} completed successfully at
“date’ "| tee -a ${BASEDST}/${DSTDIR}.log
else
echo "Backup for ${BACKUPNAME} completed successfully at
“date’ but some files vanished before they could be copied"| tee -a
${BASEDST}/${DSTDIR} .log
fi
echo "rotating old backups" | tee -a ${BASEDST}/${DSTDIR}.log
rotate "$KEEPC" "$KEEPM" "$BASEDST" >> ${BASEDST}/${DSTDIR}.log
echo "rotation completed at “date " | tee -a
${BASEDST}/${DSTDIR} .log
elif [$ret -eq 66]; then
echo "there are other rsync jobs running for this host,
skipping backup this time" | tee -a ${BASEDST}/${DSTDIR}.log
echo -n "$INTPROCID " >> /dev/shm/backup finished

pswiki - http://wiki.psuter.ch/

Last update: 16.02.2021 14:46 mobi_backup http://wiki.psuter.ch/doku.php?id=mobi_backup&rev=1613483204

exit 1;
else
echo "Backup failed for ${BACKUPNAME} with errorcode ${ret},
keeping current progress to continue next time (" date’). to debug check
${BASEDST}/${DSTDIR}.err"| tee -a ${BASEDST}/${DSTDIR}.l0g
fi

echo -n "$INTPROCID " dev/shm/backup finished
exit

start

mkdir -p ${LOCKDIR} 2>/dev/null

INTPROCID= expr $INTPROCID + 1

echo "added backup for $BACKUPNAME to the que on position
$INTPROCID" tee -a $MASTERLOG

run | tee -a $MASTERLOG

1f "rotate" is given as first argument, simply run a rotation in the
current working directory with default values

if ["$1" == "rotate"]; then
rotate 30 12 " “pwd "
exit;

fi

1f "report" is given as first argument, generate a report out of the
master log file that was passed as second argument and exit
if ["$1" == "report" 1; then
if -f "$2" ; then
echo "log file not found. please provide the full path of the
log file as second argument"
exit 1
fi
report $2
exit
fi

DSTDIR= date +%Y.%m.%d-%H%M # always start with “date +%Y.%m.%d... as
this is needed for rotation to work later on!

MASTERLOG="/tmp/ date +%Y.%m.%d-%H%M" .log"
REPORT RECIPIENTS="root" # separate multiple recipiens with space
REPORT SUBJECT="Backup Report for “hostname™"

#check if this script is not still running in an old backup
SELF= basename "$0"

if ps aux | grep $SELF | grep -v '/bin/sh' grep -vc grep -gt 2 |;
then
echo "another backup is still running, let it finish first" | tee -

http://wiki.psuter.ch/ Printed on 08.01.2026 19:41

08.01.2026 19:41 9/11 MOBI Backup (rsync wrapper)

a $MASTERLOG
echo ""ps aux | grep $SELF | grep -v '/bin/sh' | grep -v grep " |
tee -a $MASTERLOG

exit 1;
fi
echo -n " " = /dev/shm/backup finished
INTPROCID=0
PARALLELPROCS=8 # how many processes (rsync jobs)
should be started in parallel? it makes only sense to set this variable
once
LOCKDIR=/var/lock/backup # directory to keep the lock files
which are used to prevent parallel execution of backups on the same
host

HHHHHHH AR R R R R R R R R R HHHHAAAAAAAAA A R R
Backup Job Definitions start here ######H#H#HHHHAHHHRHHHHH
R i e R GG R G G R R R i

BACKUPNAME="myself" # this name will be used in status
reports, log files and in the backup path, this does not need to be the
hostname to connect to!

SOURCE="1localhost:/ localhost:/data" # source paths (space
separated if multiple paths are to be backed up)

BASEDST="/backup" # base backup dir
KEEPC=30 # number of successful
consecutive backups to keep

KEEPM=12 # number of monthly backups to keep starting
after the oldest consecutive backup

OPTIONS="" # additional rsync options like for example
"-e /usr/bin/rsh"

start

BACKUPNAME="remote.server.ch"
SOURCE="root@remote.server.ch:/ root@remote.server.ch:/boot/efi

root@remote.server.ch:/data" # source paths (space separated
if multiple paths are to be backed up)
BASEDST="/remoteBackups/${BACKUPNAME}" # base backup dir
KEEPC=30 # number of successful
consecutive backups to keep

KEEPM=12 # number of monthly backups to keep starting
after the oldest consecutive backup

OPTIONS="" # additional rsync options like for
example "-e /usr/bin/rsh"

start

G i
Backup Job Definitions end here ##H####H#H#HBHIHHABHHRHHAHHHH
HUBHHH R RS R S S R

pswiki - http://wiki.psuter.ch/

Last update: 16.02.2021 14:46 mobi_backup http://wiki.psuter.ch/doku.php?id=mobi_backup&rev=1613483204

wait for all sub processes to finish before the main process can
expire, this allows proper killing of all backups
children= ps aux | grep "$SELF" grep -v '/bin/sh’ grep -vc "grep"
$children -gt ;
sleep
hosts=" lsof ${LOCKDIR} dev/null | grep -v flock | grep backup
awk -F "{print $NF}' sort | uniq | tr "\n" " "
echo "still have $children processes, currently backing up $hosts"
children= ps aux | grep "$SELF" grep -v '/bin/sh'’ grep -vc
"grep"

echo "creating backup Report" tee -a $MASTERLOG

report $MASTERLOG tmp/backupReport.txt

cat /tmp/backupReport.txt mail -s "$SUBJECT: $REPORT_SUBJECT"
"$REPORT_RECIPIENTS"

rm -f /tmp/backupReport.txt

run daily

in order to run the backup daily, run crontab -e as user root and enter a new line like this one
here:

00 1 * * * /opt/mobi.sh > /dev/null 2>&1
using the redirects of both stdout and stderr to /dev/null makes sure you don't receive two emails

on every backup where one would come through cron. all the necessary info is logged and the
summary is emailaed directly without needing cron to send us any info.

Error due to old flock version

when this script is run on an older linux distribution such as CentOS 6.5 for example, the provided
version of flock is too old to know the -E option which specifies an exit code in case the lock could not
be acquired. in such a situation you can patch the mobi.sh script using this command:

sed -i '/-E 66 //' mobi.sh
this will make the script work on those systems. however, since now the exit code of flock is 1 when it
can't acquire a lock the error message displayed in such a case might be a bit misleading, as it is the

same as displayed in case of a syntax error in the rsync call. so keep that in mind when debugging
such cases.

Migration from RUBI

Since i was using rubi before on many systems (private and customer systems) I'll provide a quick

http://wiki.psuter.ch/ Printed on 08.01.2026 19:41

http://wiki.psuter.ch/doku.php?id=backup_with_rubi

08.01.2026 19:41 11/11 MOBI Backup (rsync wrapper)

migration guide for those who want to migrate from rubi to mobi:

1. download the above script and save it to /opt/backup/backup.sh
2. edit the script
1. adjust the REPORT _RECIPIENTS variable as needed
2. under the Backup Job Definitions start here write a new block for every
backup.
1. BACKUPNAME can be set as you like. it will be mentioned in the backup report.
Usually coming from RUBI this will be set to the same value as SRCHOST was in
RUBI
2. SOURCE needs to list all directories like SRCPART did, but they need to be
prepended by the hostname, so SRCPART=/ /boot with SRCHOST=mysrv would
be migrated into SOURCE=mysrv:/ mysrv:/boot
3. BASEDST can be copy/pasted from rubi 1:1
4. KEEPC could be set to the same value as KEEPD
3. to go the backup directory for each host and run this command

basename $(<lastdst) | tr -d ":" > .lastdst
4. remove the “:” in the directory name of the last backup that is written in lastdst like so:
mv 2018.04.01-00\:09 2018.04.01-0009

5. cleanup old log files and lastdst file and whatever else there might be laying around in this
folder.

6. remember to come back and delete the old backups when it's time. old RUBI backups won't be
rotated using mobi, this needs to be done manually. mobi will only include backups into the
rotation for which it finds a log file of a successful backup job.

From:
http://wiki.psuter.ch/ - pswiki

Permanent link:
http://wiki.psuter.ch/doku.php?id=mobi_backup&rev=1613483204

Last update: 16.02.2021 14:46

pswiki - http://wiki.psuter.ch/

http://wiki.psuter.ch/
http://wiki.psuter.ch/doku.php?id=mobi_backup&rev=1613483204

	MOBI Backup (rsync wrapper)
	Configuration
	Logs and Debugging
	Known Issues
	the script
	run daily
	Error due to old flock version
	Migration from RUBI

