
10.01.2026 03:25 1/9 MOBI Backup (rsync wrapper)

pswiki - http://wiki.psuter.ch/

MOBI Backup (rsync wrapper)

like probably every Linux admin, I eventually came to the point where I felt like it was time to write
My Own Backup Implementation as an rsync wrapper to do some backups. This script is in its
funcitonality very similar to what rubi does: it creates a new sub-directory with the date of the backup
as directory each time the backup is run. every backup directory contains a full backup of the source,
but only the difference since the last backup does actually need to be synced. when i say the
difference i mean files that have changed.. yes, files, not blocks! so if your 2GB log file gets a new
line, 2GB will have to be downloaded. but if your file does not change, it will be hard-linked to the
previous backup and therefore nothing needs to be downloaded.

to achieve this, I use rsync's –link-dst option.

In most cases, this proves to be simple but still efficient enough, rather than trying block-level
incrementals.

at the end of a successful backup, a rotation is made and old backups are being deleted where
appropriate. also a summary email is sent to the admin.

so here is the script.. use it at your own risk and let me know if you find bugs or have contributions to
make. simply send me an email to contact at psuter dot ch.

to configure, simply edit the lines or add more blocks after the

##
Backup Job Definitions start here
##
>/code>
comment in the script. some lines above the comment you can find different
config options mixed with some code that should not be changed ;).. i know..
usability and such wasn't the main focus here but instead i wanted to keep
everything in a file and as simple as possible to read the code and modify
it to your own needs.

the script will write a hidden file named .lastdst to the backup base
directory for each backup job. this file always contains the folder name of
the sub directory of the last successful backup.

<code mobi.sh bash>
#!/bin/bash
(c) Pascal Suter (contact at psuter dot ch) 2017. Use at your own Risk
licensed under GPL v3
#
Change Log:
version 1.1
replaced ps aux | grep rsync style locking with flock locking to allow
this script to run on servers that use rsync for other stuff as well :)
version 1.2
added eval in front of rsync call to properly evaluate the $OPTIONS
variable contents when running the command

Last update: 11.06.2018 16:25 mobi_backup http://wiki.psuter.ch/doku.php?id=mobi_backup&rev=1528727151

http://wiki.psuter.ch/ Printed on 10.01.2026 03:25

report() {
 LOG=$1
 error=0
 # get all jobs that where started
 jobs=`grep "^Backup of" $LOG | awk '{print $3}'`
 # get all jobs that where successfully completed
 successful_jobs=`grep "^Backup for .* completed successfully" $LOG | awk
'{print $3,"finished on",$7,$8,$9,$10,$11}'`
 # get all jbos that did not complete
 failed_jobs=`grep "^Backup failed" $LOG | awk '{print $4,"stopped on",
$15,$16,$17,$18,$19,$20}' | tr -d ",()"`
 # get remainig jobs without status report
 remaining_jobs="$jobs"
 for job in `echo -e "$successful_jobs" | awk '{print $1}'`; do
 remaining_jobs=`echo -e "$remaining_jobs" | sed -e "s/job//"`
 done
 for job in `echo -e "$failed_jobs" | awk '{print $1}'`; do
 remaining_jobs=`echo -e "$remaining_jobs" | sed -e "s/job//"`
 done
 remaining_jobs=`echo -e "$remaining_jobs" | sed -e '/^$/d'`

 # write a report summary
 echo "##"
 echo "Backup report for ${1}"
 echo "##"
 if ["$remaining_jobs" != ""]; then
 error=1
 echo "== "
 echo "== Jobs in an unknown state (still running?) === "
 echo "== "
 echo -e "$remaining_jobs"
 fi
 if ["$failed_jobs" != ""]; then
 error=1
 echo "== "
 echo "== Failed Jobs ================================= "
 echo "== "
 echo -e "$failed_jobs"
 fi
 echo "== "
 echo "== Jobs successfully completed ================= "
 echo "== "
 echo -e "$successful_jobs"
 echo "== "
 echo "== Jobs started ================================ "
 echo "== "
 echo -e "$jobs"
 if [$error -gt 0]; then
 SUBJECT="FAIL"
 else
 SUBJECT="SUCCESS"

10.01.2026 03:25 3/9 MOBI Backup (rsync wrapper)

pswiki - http://wiki.psuter.ch/

 fi
}

rotate() {
 # remove old backups and keep only a certain amount of consecutive and
monthly backups
 # parameters:
 # arg 1: number of successful consecutive backups to keep (max. 1 per
day will be kept,
 # if there is more than one backup per day, the newest will be
kept, the rest will be deleted
 # arg 2: number of successful monhthly backups to keep
 # keeps last backup of the month starting on the month befor the
oldest
 # of the consecutive backups that have been kept back
 # arg 3: directory

 olddir=`pwd`
 numConsec=$1
 numMonthly=$2
 dir="$3"
 if [$numConsec -lt 1]; then
 echo "first argument of rotate() should be number of consecutive
backups to keep. number given was smaller than 1, this must be a mistake!"
 exit 1
 fi

 if [! -d "$dir"]; then
 echo "the third argument of rotate() should be the backup directory
to clean up. the given directory does not exist"
 exit 1
 fi
 cd "$dir"
 echo "Starting Cleanup Process for `pwd`"
 # get all successful backups
 backups=`grep -l "completed successfully" *.log | sort | sed -e
's/.log$//'`

 # keep the last $numConsec consecutive backups
 keep=`echo "$backups" | awk -F - '{print $1}' | grep -v -P "^\s*$" |
uniq | tail -n $numConsec`

 # check if we even have more than $numConsec backups yet:
 if [`echo "$backups" | wc -l` -lt $numConsec]; then
 echo "we do not have enough backups to start deleting yet"
 exit 0
 fi

 # get the oldest of the last $numConsec backups:
 lastdate=`echo "$keep" | head -n 1`
 lastyear=`echo $lastdate | awk -F . '{print $1}'`

Last update: 11.06.2018 16:25 mobi_backup http://wiki.psuter.ch/doku.php?id=mobi_backup&rev=1528727151

http://wiki.psuter.ch/ Printed on 10.01.2026 03:25

 lastmonth=`echo $lastdate | awk -F . '{print $2}'`
 lastday=`echo $lastdate | awk -F . '{print $3}'`

 # calculate the last $numMonthly months to keep:
 month=$lastmonth
 year=$lastyear
 for i in `seq 1 $numMonthly`; do
 month=`expr $month + 0`
 let month--
 if [$month -lt 1]; then
 month=12
 let year--
 fi
 month=`printf "%02d\n" $month`
 keep=`echo -e "$keep\n$year.$month"`
 done
 keepdates=""
 for i in $keep ; do
 latest=`echo "$backups" | grep "^$i" | tail -n 1`
 keepdates=`echo -e "$keepdates\n$latest"`
 done

 keepdates=`echo "$keepdates" | grep -v -P "^\s*$"`

 delete=`ls *.log | sed -e 's/.log$//' | sort | uniq`
 delbackups=$backups
 for i in $keepdates; do
 delete=`echo "$delete" | grep -v "$i"`
 delbackups=`echo "$delbackups" | grep -v "$i"`
 done

 delbackups=`echo "$delbackups" | grep -v -P "^\s*$"`

 echo "All Backups:"
 echo "$backups"
 echo "==============================="
 echo "Backups to delete:"
 echo "$delbackups"
 echo "==============================="
 echo "Backups to keep:"
 echo "$keepdates"

 #sanity check before deleting backups: check if enough backups will be
left after deleting everything else
 numBD=`echo "$delbackups" | wc -l`
 numBT=`echo "$backups" | wc -l`
 survivors=`expr $numBT - $numBD`
 if [$survivors -lt $numConsec]; then
 echo "ERROR: somehow too many backups would have been deletd, this
should not happen!, aborting"
 exit 1

10.01.2026 03:25 5/9 MOBI Backup (rsync wrapper)

pswiki - http://wiki.psuter.ch/

 else
 echo "$survivors backups will be left after deleting obsolete
backups"
 fi

 echo "$delete" | xargs -I DDD /bin/bash -c 'echo "deleting DDD*"; rm -rf
--one-file-system DDD*'
 echo "cleanup complete for `pwd`"
}

run() {
 echo "Backup of $BACKUPNAME was queud on Position $INTPROCID";
 keepWaiting=1
 while [$keepWaiting -gt 0]; do
 keepWaiting=0
 #check if enough processes that where launched before me have
finished for me to start my work
 for ((i=1; i<=$(expr $INTPROCID - $PARALLELPROCS); i++)); do
 if [`grep -c " $i " /dev/shm/backup_finished` -eq 0]; then
 keepWaiting=1
 fi
 done
 #echo "waiting patiently to start the backup of $BACKUPNAME with my
ID $INTPROCID"
 sleep 5
 done

 processes=`lsof ${LOCKDIR}/* 2>/dev/null | grep -v flock | grep backup |
awk -F / '{print $NF}' | sort | uniq | wc -l`
 while [$processes -gt $PARALLELPROCS]; do
 echo "Waiting for another rsync to complete before I can start with
${BACKUPNAME}."
 sleep 10
 processes=`lsof ${LOCKDIR}/* 2>/dev/null | grep -v flock | grep
backup | awk -F / '{print $NF}' | sort | uniq | wc -l`
 done
 echo "Starting Backup for ${BACKUPNAME} at `date`" | tee -a
${BASEDST}/${DSTDIR}.log

 mkdir -p ${BASEDST}

 # read the .lastdst file and check if it is either empty (full backup)
or if it contains a valid directory (incremental backup).
 #if it is not empty and the content is not the name of a directory, the
backup will be aborted
 OLDDST="`cat $BASEDST/.lastdst 2>/dev/null`"
 go=1
 if [-n "$OLDDST"]; then
 if [! -d "${BASEDST}/${OLDDST}"]; then
 echo "the given last destination $OLDDST does not exist, will
not proceed with the backup in order to not accidently do a full backup"

Last update: 11.06.2018 16:25 mobi_backup http://wiki.psuter.ch/doku.php?id=mobi_backup&rev=1528727151

http://wiki.psuter.ch/ Printed on 10.01.2026 03:25

 go=0
 fi
 fi

 if [$go -eq 1]; then
 echo "flock -E 66 -n ${LOCKDIR}/${BACKUPNAME} rsync -aAHXv
${OPTIONS} --relative --delete --numeric-ids --bwlimit=${BWLIMIT} --progress
--link-dest="../${OLDDST}" --one-file-system ${SOURCE} ${BASEDST}/current >>
${BASEDST}/${DSTDIR}.log 2>&1"
 eval flock -E 66 -n ${LOCKDIR}/${BACKUPNAME} rsync -aAHXv ${OPTIONS}
--relative --delete --numeric-ids --bwlimit=${BWLIMIT} --progress --link-
dest="../${OLDDST}" --one-file-system ${SOURCE} ${BASEDST}/current >>
${BASEDST}/${DSTDIR}.log 2>&1
 ret=$?
 else
 ret=1
 fi

 if [$ret -eq 0 -o $ret -eq 24]; then
 mv ${BASEDST}/current ${BASEDST}/${DSTDIR}
 echo -n ${DSTDIR} > ${BASEDST}/.lastdst
 if [$ret -eq 0]; then
 echo "Backup for ${BACKUPNAME} completed successfully at
`date`"| tee -a ${BASEDST}/${DSTDIR}.log
 else
 echo "Backup for ${BACKUPNAME} completed successfully at `date`
but some files vanished before they could be copied"| tee -a
${BASEDST}/${DSTDIR}.log
 fi
 echo "rotating old backups" | tee -a ${BASEDST}/${DSTDIR}.log
 rotate "$KEEPC" "$KEEPM" "$BASEDST" >> ${BASEDST}/${DSTDIR}.log
 echo "rotation completed at `date`"| tee -a ${BASEDST}/${DSTDIR}.log
 elif [$ret -eq 66]; then
 echo "there are other rsync jobs running for this host, skipping
backup this time" | tee -a ${BASEDST}/${DSTDIR}.log
 echo -n "$INTPROCID " >> /dev/shm/backup_finished
 exit 1;
 else
 echo "Backup failed for ${BACKUPNAME} with errorcode ${ret}, keeping
current progress to continue next time (`date`)"| tee -a
${BASEDST}/${DSTDIR}.log
 fi
 echo -n "$INTPROCID " >> /dev/shm/backup_finished
 exit
}

start(){
 mkdir -p ${LOCKDIR} 2>/dev/null
 INTPROCID=`expr $INTPROCID + 1`
 echo "added backup for $BACKUPNAME to the que on position $INTPROCID" |
tee -a $MASTERLOG

10.01.2026 03:25 7/9 MOBI Backup (rsync wrapper)

pswiki - http://wiki.psuter.ch/

 run | tee -a $MASTERLOG &
}

if "rotate" is given as first argument, simply run a rotation in the
current working directory with default values
if ["$1" == "rotate"]; then
 rotate 30 12 "`pwd`"
 exit;
fi

if "report" is given as first argument, generate a report out of the
master log file that was passed as second argument and exit
if ["$1" == "report"]; then
 if [! -f "$2"]; then
 echo "log file not found. please provide the full path of the log
file as second argument"
 exit 1
 fi
 report $2
 exit
fi

DSTDIR=`date +%Y.%m.%d-%H%M` # always start with `date +%Y.%m.%d... as this
is needed for rotation to work later on!

MASTERLOG="/tmp/`date +%Y.%m.%d-%H%M`.log"
REPORT_RECIPIENTS="root" # separate multiple recipiens with space
REPORT_SUBJECT="Backup Report for `hostname`"

#check if this script is not still running in an old backup
SELF=`basename "$0"`

if [`ps aux | grep $SELF | grep -v '/bin/sh' | grep -vc grep` -gt 2]; then
 echo "another backup is still running, let it finish first" | tee -a
$MASTERLOG
 echo "`ps aux | grep $SELF | grep -v '/bin/sh' | grep -v grep` " | tee -
a $MASTERLOG
 exit 1;
fi

echo -n " " > /dev/shm/backup_finished
INTPROCID=0
PARALLELPROCS=8 # how many processes (rsync jobs) should be
started in parallel? it makes only sense to set this variable once
LOCKDIR=/var/lock/backup # directory to keep the lock files which
are used to prevent parallel execution of backups on the same host

##
Backup Job Definitions start here
##

Last update: 11.06.2018 16:25 mobi_backup http://wiki.psuter.ch/doku.php?id=mobi_backup&rev=1528727151

http://wiki.psuter.ch/ Printed on 10.01.2026 03:25

BACKUPNAME="myself" # this name will be used in status
reports, log files and in the backup path, this does not need to be the
hostname to connect to!
SOURCE="localhost:/ localhost:/data" # source paths (space separated if
multiple paths are to be backed up)
BASEDST="/backup" # base backup dir
KEEPC=30 # number of successful
consecutive backups to keep
KEEPM=12 # number of monthly backups to keep starting
after the oldest consecutive backup
OPTIONS="" # additional rsync options like for example "-
e /usr/bin/rsh"
start

BACKUPNAME="remote.server.ch"
SOURCE="root@remote.server.ch:/ root@remote.server.ch:/boot/efi
root@remote.server.ch:/data" # source paths (space separated if
multiple paths are to be backed up)
BASEDST="/remoteBackups/${BACKUPNAME}" # base backup dir
KEEPC=30 # number of successful
consecutive backups to keep
KEEPM=12 # number of monthly backups to keep starting
after the oldest consecutive backup
OPTIONS='' # additional rsync options like for example "-
e /usr/bin/rsh"
start

##
Backup Job Definitions end here
##

wait for all sub processes to finish before the main process can expire,
this allows proper killing of all backups
children=`ps aux | grep "$SELF" | grep -v '/bin/sh' | grep -vc "grep"`
while [$children -gt 2]; do
 sleep 1
 hosts=`lsof ${LOCKDIR}/* 2>/dev/null | grep -v flock | grep backup | awk
-F / '{print $NF}' | sort | uniq | tr "\n" " "`
 echo "still have $children processes, currently backing up $hosts"
 #ps aux | grep "$SELF" | grep -v '/bin/sh' | grep -v "grep"
 children=`ps aux | grep "$SELF" | grep -v '/bin/sh' | grep -vc "grep"`
done
report $MASTERLOG > /tmp/backupReport.txt
cat /tmp/backupReport.txt | mail -s "$SUBJECT: $REPORT_SUBJECT"
"$REPORT_RECIPIENTS"
rm -f /tmp/backupReport.txt

10.01.2026 03:25 9/9 MOBI Backup (rsync wrapper)

pswiki - http://wiki.psuter.ch/

From:
http://wiki.psuter.ch/ - pswiki

Permanent link:
http://wiki.psuter.ch/doku.php?id=mobi_backup&rev=1528727151

Last update: 11.06.2018 16:25

http://wiki.psuter.ch/
http://wiki.psuter.ch/doku.php?id=mobi_backup&rev=1528727151

	MOBI Backup (rsync wrapper)

