22.01.2026 02:06 1/7 enOcean

enOcean

enOcean is a pretty cool energy harvesting technology focused on smart home applications. enOcean
is best known for the wireless light switches that don't require a battery to operate. additionally, they
come in looks compatible to Feller edizio due and hager callysto, which are used in almost every
building in switzerland.

the light switch has a piezo module built in which uses the energy of the button-push to create
enough electricity to send a datagram to the enOcean receiver to tell it that the switch has been
pushed.

another nice thing about enOcean is the fact, that they sell a pretty affordable (15$ range) module
called TCM310 which can be used to both send or receive enOcean data packages over the air. The
protocol is also openly documented.

my goal is to use a TCM310 in the form of an enOcean Pi module together with ideally a sonoff or
some other ESP8266 based board to receive push button presses and send them to an MQTT broaker.
As the “enOcean PI” product name says, the module is acutally made for a raspberry pi and | am sure,
that my goal could be achieved simpler by using a raspberry Pi. But i want this to be a set-and-forget
system, and a full blown linux server to me is just not such a thing. however, we will see how it works
out.. maybe i'll revert to the easy path in case it gets too complicated to do it all on an ESP8266 :)

enOcean Pl pinout

there are only four pins which are used on the enOcean Pl module:

CU 000000000

thanks to Kerry D. Wong who published this Information. He writes:

The I0Vdd and Vdd pins are connected directly to pin 1 (3.3V) on Raspberry Pi. Besides the power
and ground pins, the only connections are to the hardware UART pins (header pin 8 and pin 10).

pswiki - http://wiki.psuter.ch/

http://wiki.psuter.ch/lib/exe/detail.php?id=enocean&media=enocean:enoceansensorstransceiverpinout-300x225.jpg
http://www.kerrywong.com/2014/08/10/a-quick-overview-of-the-enocean-pi-and-enocean-sensor-kit/

Last update: 13.03.2018 22:43 enocean http://wiki.psuter.ch/doku.php?id=enocean&rev=1520977400

esp8266

[plan on using a Wemos D1 mini module (or a clone of it i guess) which can be purchased on
aliexpress for a few $. i will then use the arduino core on it to program it via the arduino IDE.

arduino-esp8266 documentation
based on this documentation, the serial port will be available on GPIO1 and GPIO3.
here are a few libraries i have found beforehand and intend on trying out:

e Async MQTT client for mqtt obviously

e ESPAsyncTCP to plot debug messages to a netcat server while working with the enOcean
module on the serial port.. this is to avoid using SoftSerial.

e WiFiManager seems to do all we need to make the final device easy to get configured without a
serial connection (has automatic fall back to AP mode with captive portal config page).

e arduino enocean library with a description from the developer

setup and development

first setup_arduino_ide for esp8266 and install the WiFiManager via the Tools-Include
Library-Manage Libraries. Search for and install WiFiManager. This also installs all the
dependencies which is nice. However i had to manually download and install the latest development
release from the git, in order to have the configuration page available even when the device was
connected to the wifi.. this should become part of the stable release any time soon, so this step might
not be necessary anymore when you read this:

1. navigate to <arduino directory>/portable/sketchbook/libraries/

2. rm -rf WiFiManager
git clone https://github.com/tzapu/WiFiManager.git
cd WiFiManager
git branch -a
git checkout remotes/origin/development

get wifimanager to work

that's actually fairly simple.. just include it and put autoConnect () in your startup. the tricky part
was to get the config webpage to run using startWebPortal(). the trick i've missed was, that the

process () method needs to be called in the Loop () or else it won't display any webpages. so here
is the working sketch:

#include <ESP8266WiFi.h> //ESP8266 Core WiFi Library (you most
likely already have this in your sketch)

#include <DNSServer.h> //Local DNS Server used for redirecting
all requests to the configuration portal

#include <ESP8266WebServer.h> //Local WebServer used to serve the

http://wiki.psuter.ch/ Printed on 22.01.2026 02:06

https://arduino-esp8266.readthedocs.io/en/latest/
https://github.com/marvinroger/async-mqtt-client
https://github.com/me-no-dev/ESPAsyncTCP
https://github.com/tzapu/WiFiManager
https://bitbucket.org/charly37/arduino_enocean_lib/downloads/
http://djynet.net/?p=635
http://wiki.psuter.ch/doku.php?id=setup_arduino_ide_for_esp8266

22.01.2026 02:06 3/7 enOcean

configuration portal
#include <WiFiManager.h> //https://github.com/tzapu/WiFiManager
WiFi Configuration Magic

WiFiManager wifiManager;

void setup
// put your setup code here, to run once:
Serial.begin g
wifiManager.autoConnect();
wifiManager.startWebPortal();

void loop
// put your main code here, to run repeatedly:
wifiManager.process();

add the async printer
we use ESPAsyncTCP's AsyncPrinter to print debug messages to a tcp socket at our development
machine as we will use the serial port to connect to our enOcean board.

first we need to install the library:

cd <arduino directory>/portable/sketchbook/libraries/
git clone https://github.com/me-no-dev/ESPAsyncTCP.git

for my development machine to receive those messages i need to open a socket with netcat in
listening mode. this is for linux but i am sure there are tools like that in windows too, i just don't know
them. so on your develpment machine run:

nc -1 3333

and leave the terminal open.

now we could integrate it as is into our code as you can see in the example | posted on Github, but
the problem with AsyncPrinter is, that it blocks forever waiting for a connection. This means, that our
sketch won't make it past the setup process if our debug host is not online. that's not what we want. |
therefore modified the AsyncPrinter source slightly by removing these two lines from both
AsnycPrinter::connect() functions:

_client->state() <
delay ;

let's add AsyncPrinter and a debug () function which handles sending debug messages if we have
a connection to a debug host:

#include <ESP8266WiFi.h> //ESP8266 Core WiFi Library (you most

pswiki - http://wiki.psuter.ch/

https://github.com/me-no-dev/ESPAsyncTCP
https://github.com/me-no-dev/ESPAsyncTCP/issues/30

Last update: 13.03.2018 22:43 enocean http://wiki.psuter.ch/doku.php?id=enocean&rev=1520977400

likely already have this in your sketch)

#include <DNSServer.h> //Local DNS Server used for redirecting
all requests to the configuration portal

#include <ESP8266WebServer.h> //Local WebServer used to serve the
configuration portal

#include <WiFiManager.h> //https://github.com/tzapu/WiFiManager

WiFi Configuration Magic
#include <AsyncPrinter.h>

bool enableOnlineDebugging=true;
const char *debuggerHost="192.168.168.48";

AsyncPrinter ap;
WiFiManager wifiManager;
bool debugOnline=false;
bool firstround=true;

void setup
// put your setup code here, to run once:
Serial.begin(115200);
wifiManager.autoConnect();
wifiManager.startWebPortal();
ap.connect(debuggerHost,3333);
enableOnlineDebugging
//block for maximum 5 seconds trying to reach the debugger
int 1 = 0; i < 10 ; i++
ap.connected
debugOnline=true;
ap.println("setup done");

’

delay(500);

void debug(const char *message
debugOnline
ap.println(message) ;

Serial.println("debugger is not online");

void loop
// put your main code here, to run repeatedly:
wifiManager.process();
firstround
debug("hello world");
firstround=false;

http://wiki.psuter.ch/ Printed on 22.01.2026 02:06

22.01.2026 02:06 5/7 enOcean

you should now see “setup done” and “hello world” on your terminal with nc running.

add enOcean

now we can finally add the enocean receiver to our setup. we therefore connect the +3.3V to the
+3.3V of the Wemos D1, the GND to the GND and we cross connect the RX of the enocean Module to
the TX of the Wemos D1 and the same for the TX fo the enOcean that goes to the RX of the Wemos

next we need the enOceanMsqg library.. however, i have modified it slightly (removed all serial
debugging and changed the enOcean communication part from Seriall to Serial as the
ESP8266's Seriall only supports transmitting data but not receiving. So either you do these
modifications yourself or you get [[

my Version
of it.

extract the contents of this ZIP to the sketchbook/libraries folder. | then also modified the
Sketch to both include the enOcean stuff and to disable serial debugging of the WiFiManager when
online-debugging is requested.

#include <ESP8266WiFi.h> //ESP8266 Core WiFi Library (you most
likely already have this in your sketch)

#include <DNSServer.h> //Local DNS Server used for redirecting
all requests to the configuration portal

#include <ESP8266WebServer.h> //Local WebServer used to serve the
configuration portal

#include <WiFiManager.h> //https://github.com/tzapu/WiFiManager

WiFi Configuration Magic
#include <AsyncPrinter.h>
#include <EnOceanMsg.h> //http://djynet.net/?p=635

bool enableOnlineDebugging=true;
const char *debuggerHost="192.168.168.48";

EnOceanMsg Msg;

AsyncPrinter ap;

WiFiManager wifiManager;

bool debugOnline=false;

bool firstround=true;

int lastPayload=0;

void setup
// put your setup code here, to run once:
Serial.begin(57600);

enableOnlineDebugging
wifiManager.setDebugOutput(false);

wifiManager.autoConnect();
wifiManager.startWebPortal();

pswiki - http://wiki.psuter.ch/

http://wiki.psuter.ch/lib/exe/fetch.php?media=enocean:enoceanmsg.zip
http://djynet.net/?p=635

Last update: 13.03.2018 22:43 enocean http://wiki.psuter.ch/doku.php?id=enocean&rev=1520977400

ap.connect(debuggerHost,3333);
enableOnlineDebugging
//block for maximum 5 seconds trying to reach the debugger
int i = 0; 1 < 10 ; i++
ap.connected
debugOnline=true;
ap.println("connected");

’

delay(500);

void debug(const char *message
debugOnline
ap.println(message) ;

Serial.println("debugger is not online");

_Msg.decodel();
_Msg.dataAvailable() == true

void debugHex(int payload
debugOnline
ap.println(payload, HEX) ;

void loop
// put your main code here, to run repeatedly:
int payload=0;
wifiManager.process();
firstround
debug("hello world");
firstround=false;

_Msg.decode();
_Msg.dataAvailable() == true
payload= Msg.getPayload();
payload!=lastPayload

debug("new payload received:");
debugHex (payload) ;
lastPayload=payload;
debugHex(Msg.getSenderId ;

http://wiki.psuter.ch/ Printed on 22.01.2026 02:06

22.01.2026 02:06 717 enOcean

delay ;

now you should see output like this on your netcat console after you started the sketch and then
pressed a button:

connected

hello world

new payload received:
70

3102F7

new payload received:
0

3102F7

70 is the hex code for one of the buttons and 31027 is actually 0x00 0x31 0x02 Oxf7 which is
the enOcean device's address which can also be found on the lable on the device itself.

From:
http://wiki.psuter.ch/ - pswiki

Permanent link:
http://wiki.psuter.ch/doku.php?id=enocean&rev=1520977400

Last update: 13.03.2018 22:43

pswiki - http://wiki.psuter.ch/

http://wiki.psuter.ch/
http://wiki.psuter.ch/doku.php?id=enocean&rev=1520977400

	enOcean
	enOcean PI pinout
	esp8266
	setup and development
	get wifimanager to work
	add the async printer
	add enOcean

